Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proton-driven plasma-wakefield acceleration

This article has been updated

Abstract

Plasmas excited by laser beams or bunches of relativistic electrons have been used to produce electric fields of 10–100 GV m−1. This has opened up the possibility of building compact particle accelerators at the gigaelectronvolt scale. However, it is not obvious how to scale these approaches to the energy frontier of particle physics—the teraelectronvolt regime. Here, we introduce the possibility of proton-bunch-driven plasma-wakefield acceleration, and demonstrate through numerical simulations that this energy regime could be reached in a single accelerating stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic description of a section of the plasma-wakefield-accelerating structure.
Figure 2: The electric field strength and the electron density in the plasma.
Figure 3: Evolution of the proton bunch and electron bunch in the plasma.
Figure 4: Electron energy versus distance.

Similar content being viewed by others

Change history

  • 24 April 2009

    In the version of this article originally published online, in the first equation of the section 'Initial considerations', the denominator was mistakenly not included within the square-root sign. This has been corrected in all versions of the article.

References

  1. Budker, G. I. Proc. CERN Symp. on High-Energy Accelerators and Pion Physics 68–75 (1956).

    Google Scholar 

  2. Veksler, V. I. Proc. CERN Symp. on High-Energy Accelerators and Pion Physics 80–83 (1956).

    Google Scholar 

  3. Fainberg, Ya. B. Proc. CERN Symp. on High-Energy Accelerators and Pion Physics 84–90 (1956).

    Google Scholar 

  4. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  5. Joshi, C. et al. Forward Raman instability and electron acceleration. Phys. Rev. Lett. 47, 1285–1288 (1981).

    Article  ADS  Google Scholar 

  6. Kitagawa, Y. et al. Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 48–51 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  7. Nakajima, K. et al. in Advanced Accelerator Concepts, AIP Conference Proceedings Vol. 335 (ed. Schoessow, P.) 145–155 (AIP Press, 1995).

    Book  Google Scholar 

  8. Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

    Article  ADS  Google Scholar 

  9. Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693–708 (1985).

    Article  ADS  Google Scholar 

  10. O’Connell, C. L. et al. Plasma production via field ionization. Phys. Rev. ST Accel. Beams 9, 101301 (2006).

    Article  ADS  Google Scholar 

  11. Muggli, P. et al. Meter-scale plasma-wakefield accelerator driven by a matched electron beam. Phys. Rev. Lett. 93, 014802 (2004).

    Article  ADS  Google Scholar 

  12. Lee, S. et al. Plasma-wakefield acceleration of a positron beam. Phys. Rev. E 64, 045501 (2001).

    Article  ADS  Google Scholar 

  13. Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).

    Article  ADS  Google Scholar 

  14. Ruth, R. D., Chao, A. W., Morton, P. L. & Wilson, P. B. A plasma wake-field accelerator. Part. Accel. 17, 171–189 (1985).

    Google Scholar 

  15. Chen, P., Su, J. J., Dawson, J. M., Bane, K. L. & Wilson, P. B. On energy transfer in the plasma wakefield accelerator. Phys. Rev. Lett. 56, 1252–1255 (1986).

    Article  ADS  Google Scholar 

  16. Esarey, E., Sprangle, P., Krall, J. & Ting, A. Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252–288 (1996).

    Article  ADS  Google Scholar 

  17. Joshi, C. Plasma accelerators. Sci. Am. 294, 41–47 (2006).

    Article  Google Scholar 

  18. Joshi, C. The development of laser- and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501 (2007).

    Article  ADS  Google Scholar 

  19. Katsouleas, T. Plasma physics: On the node of a wave. Nature 444, 688–689 (2006).

    Article  ADS  Google Scholar 

  20. Lotov, K. V. Blowout regimes of plasma wakefield acceleration. Phys. Rev. E 69, 046405 (2004).

    Article  ADS  Google Scholar 

  21. Kallos, E. et al. High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches. Phys. Rev. Lett. 100, 074802 (2008).

    Article  ADS  Google Scholar 

  22. Blue, B. E. et al. Parametric exploration of intense positron beam-plasma interactions. Laser Part. Beams 21, 497–504 (2003).

    Article  ADS  Google Scholar 

  23. Zhou, C. T. et al. A comparison of ultrarelativistic electron- and positron-bunch propagation in plasmas. Phys. Plasmas 13, 092109 (2006).

    Article  ADS  Google Scholar 

  24. Hogan, M. J. et al. Ultrarelativistic-positron-beam transport through meter-scale plasmas. Phys. Rev. Lett. 90, 205002 (2003).

    Article  ADS  Google Scholar 

  25. Blue, B. E. et al. Plasma-wakefield acceleration of an intense positron beam. Phys. Rev. Lett. 90, 214801 (2003).

    Article  ADS  Google Scholar 

  26. Blue, B. E. Plasma Wakefield Acceleration of an Intense Positron Beam. Thesis, UCLA (2003).

  27. Lu, W., Huang, C., Zhou, M. M. & Mori, W. B. Limits of linear plasma wakefield theory for electron or positron beams. Phys. Plasmas 12, 063101 (2005).

    Article  ADS  Google Scholar 

  28. Lotov, K. V. Efficient operating mode of the plasma wakefield accelerator. Phys. Plasmas 12, 053105 (2005).

    Article  ADS  Google Scholar 

  29. Eichner, T. et al. Miniature magnetic devices for laser-based, table-top free-electron lasers. Phys. Rev. ST Accel. Beams 10, 082401 (2007).

    Article  ADS  Google Scholar 

  30. Pukhov, A. & Kostyukov, I. Control of laser wake field acceleration by plasma density profile. Phys. Rev. E 77, 025401 (2008).

    Article  ADS  Google Scholar 

  31. Agostinelli, S., et al. [Geant4 Collaboration]Nucl. Instrum. Methods A 506, 250–303 (2003).

  32. Pukhov, A. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61, 425–433 (1999).

    Article  ADS  Google Scholar 

  33. Lotov, K. V. Fine wakefield structure in the blowout regime of plasma wakefield accelerators. Phys. Rev. ST Accel. Beams 6, 061301 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  34. Lotov, K. V. Simulation of ultrarelativistic beam dynamics in plasma wake-field accelerator. Phys. Plasmas 5, 785–791 (1998).

    Article  ADS  Google Scholar 

  35. Kirby, N. et al. Emittance growth from multiple Coulomb scattering in a plasma wakefield accelerator. Proc. PAC2007 2097–3099 (2007).

  36. Lotov, K. V. Acceleration of positrons by electron beam-driven wakefields in a plasma. Phys. Plasmas 14, 023101 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Chattopadhyay, E. Elsen and F. Willeke for useful discussions concerning proton-bunch compression. This work has been supported in part by the Russian Science Support Foundation, Russian President grants MD-4704.2007.2 and NSh-6046.2008.2, RFBR grant 06-02-16757 and the Russian Ministry of Education grant RNP.2.1.1.3983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Caldwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldwell, A., Lotov, K., Pukhov, A. et al. Proton-driven plasma-wakefield acceleration. Nature Phys 5, 363–367 (2009). https://doi.org/10.1038/nphys1248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1248

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing