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The quantum-optical Josephson interferometer
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The photon-blockade effect, where nonlinearities at the
single-photon level alter the quantum statistics of light emitted
from a cavity1, has been observed in cavity quantum electrody-
namics experiments with atomic2,3 and solid-state systems4–8.
Motivated by the success of single-cavity quantum electro-
dynamics experiments, the focus has recently shifted to the
exploration of the rich physics promised by strongly correlated
quantum-optical systems in multicavity and extended photonic
media9–14. Even though most cavity quantum electrodynamics
structures are inherently dissipative, most of the early work
on strongly correlated photonic systems has assumed cavity
structures where losses are essentially negligible. Here we in-
vestigate a dissipative quantum-optical system that consists of
two coherently driven linear optical cavities connected through
a central cavity with a single-photon nonlinearity (an optical
analogue of the Josephson interferometer). The interplay of
tunnelling and interactions is analysed in the steady state of
the system, when a dynamical equilibrium between driving and
losses is established. Strong photonic correlations can be iden-
tified through the suppression of Josephson-like oscillations of
the light emitted from the central cavity as the nonlinearity
is increased. In the limit of a single nonlinear cavity coupled
to two linear waveguides, we show that photon-correlation
measurements would provide a unique probe of the crossover
to the strongly correlated regime.

We investigate an optical analogue of the superconducting
Josephson interferometer, which we name the quantum-optical
Josephson interferometer, revealing new features due to the genuine
non-equilibrium interplay of coherent tunnelling and on-site
interactions. We consider two variants of the proposed device
with a central nonlinear cavity coupled to two external driving
lasers through either two side cavities (Fig. 1a,b) or two waveguides
(Fig. 1d). The three-cavity system can be generalized to anN -cavity
system with a central nonlinear one14 (Fig. 1c), and in the limiting
case of very large N this reduces to the single cavity coupled to
two side waveguides (Fig. 1d). In both cases, the coupling to the
side cavities (or waveguides) is a consequence of photon tunnelling.
We assume the central cavity to have a sizable single-photon
nonlinearity, for example due to some radiation–matter interaction,
be it Jaynes–Cummings-type interaction (with a single atom or
quantum dot in the central cavity)15, giant Kerr nonlinearity1 or
confined polariton interaction (for example with a quantum well
embedded in the cavity)16. Themodel discussed here is fairly general
and can be realized in a variety of quantum-optical systems. In
the following we show that the light emitted from the central
cavity reflects the interplay of two competing effects, tunnelling and
interactions. As the relative magnitude of the interaction parameter
is varied with respect to the tunnelling strength, the system shows
a crossover between a coherent and a strongly correlated regime.
In the coherent regime, photons are delocalized over the three
cavities and the emitted light strongly depends on the phase
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difference between the two pumping lasers (Josephson oscillations).
In the strongly correlated regime instead, the inhibition of photon
number occupation beyond Fock states |0〉 and |1〉 in the central
cavity reduces the quantum coherence between the two outer
ones. The suppression of Josephson oscillations in the emitted
light is accompanied by a crossover from Poissonian to sub-
Poissonian photon statistics.

Photon correlation measurements reveal features of an inter-
acting few-body system that are not captured by more traditional
transport-type measurements. In fact, the device we propose has
close analogies with a phase-biased Cooper pair transistor. In the
latter, the critical current can be electrostatically modulated by
changing the gate potential on the central island connected to two
superconducting reservoirs17,18. The interplay between coherent
tunnel coupling and on-site interactions in these systems has been
used in many ground-breaking experiments, ranging from the
observation of a quantum phase transition in Josephson junction
arrays19 to the direct demonstration of number–phase uncertainty
in superconducting islands20. Although the operation of both elec-
tronic and photonic versions is based on the quantum-mechanical
conjugation between phase and number variables, the quantum-
optical Josephson interferometer is an intrinsically open system.
Given the enormous impact of the Josephson devices in electronics,
frommetrology to quantum information processing, we expect that
the quantum-optical Josephson interferometermight constitute the
building block for a new class of quantum-optical devices.

In the absence of losses the three-cavity set-up depicted in
Fig. 1a,b is described by the Hamiltonian

Ĥ =
3∑

k=1

∆k p̂
†
k p̂k+ J (p̂

†
1p̂2+ p̂

†
2p̂3+h.c.)+Up̂†

2p̂
†
2p̂2p̂2

+

∑
k=1,3

(Ek p̂
†
k+h.c.) (1)

written in the rotating frame with respect to the frequencies of the
two pumping lasers (~= 1). In the above equation, ∆k =ωk −ωL
are the detunings of the coherent pump lasers whose amplitudes
are E1,3 = |E1,3|exp{iφ1,3}, where |E1,3| are assumed to be time
independent (cw pumping). We will characterize the three-cavity
system by analysing the response of the central cavity as a function
of the phase difference φ = φ3−φ1. The two couplings J and U
quantify the hopping strength between neighbouring cavities and
the nonlinear photon coupling in the central cavity, respectively.
The operators p̂1,3 describe non-interacting bosonic fields in the
external cavities, that is, free cavity photons, whereas the elementary
excitations in the central cavity are interacting polaritons denoted
by p̂2. Both the tunnelling and the coherent pumping act on purely
photonic degrees of freedom; for example, J is due to the overlap
of the photonic component among nearest-neighbour cavities. A
rigorous derivation of themodel in equation (1) inevitably depends
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Figure 1 | The systems under consideration. a, Schematic diagram of the
quantum-optical Josephson interferometer with three coupled cavities. The
relevant quantities of the model are defined in the text. b, A possible
photonic-crystal-based implementation (with calculated cavity mode
profiles), where the middle cavity can contain a quantum dot or a quantum
well in strong coupling with the high-quality-factor photonic crystal cavity
mode. c, Schematic diagram of an interferometer in the limit of a large
number of coupled linear cavities in optical contact with the central
nonlinear cavity, in which only the edges of the system are pumped. d, A
possible solid-state implementation of c, using a photonic crystal circuit
with two side waveguides coupled to the central nonlinear cavity.

on the specific system under consideration and has been provided
before in the context of atomic9 or solid-state16 cavity quantum
electrodynamics implementations. Readily accessible schemes for
achieving large photon–photon interactions are based on resonant
coupling of a single emitter to a cavity mode (that is, the Jaynes–
Cummingsmodel). As discussed in the Supplementary Information
section ‘Experimental feasibility’, the principal features we obtain
using model (1) are qualitatively identical to those predicted by the
Jaynes–Cummings-type single-photon nonlinearity.

The dynamics of the full model, equation (1), is effectively
equivalent to that of two coupled bosonic fields: one is coherently
driven, whereas the other is nonlinear (see the Methods section).
From now on we consider for simplicity the case of equal detunings
and resonant pumping, ∆k = ∆ = 0. Losses can be taken into
account within the quantumMaster equation in the Born–Markov
approximation for the system density matrix ρ, which is expressed
in the usual Lindblad form21:

∂ρ

∂t
= i[ρ,Ĥ ]+

3∑
k=1

γk

2
(2p̂kρp̂

†
k− p̂

†
k p̂kρ−ρp̂

†
k p̂k) (2)

Inmost of the relevant regimes, theMaster equation has to be solved
numerically. A description of the approach used in this work is

presented in the Methods section. In the remainder of the text, we
shall assume γ1,3 = γ . With the specific experimental realizations
of Fig. 1b,d in mind, typical parameter values are as follows:
inter-cavity tunnel coupling J ' 1meV (ref. 22); γ ' 0.01meV
(for a cavity with a quality factor of Q' 105 in the optical/near-
infrared domain)23. With these values, a ratio of U/γ = 10 (see
Supplementary Information) can readily be achieved with the
currently available technology.

It is instructive to first consider the case of vanishing interaction
(U = 0), where an exact analytical solution for the steady state of
equation (2) can be obtained. The case of equal amplitudes of the
two driving lasers (E1=E3=E) and equal losses in the three cavities
(γ =γ2) captures all the essential details of the non-interacting case.
In the steady state the average number of photons in the central
cavity 〈n2〉= 〈p̂

†
2p̂2〉 is found to be

〈n2〉=
64J 2|E|2

(8J 2+γ 2)2
cos2

φ

2
(3)

This is the analogue of Josephson oscillations, imprinted in the light
emitted from the central cavity, due to the interference between
the two coherent driving fields. Two features of this solution
are to be noticed for a comparison with the more interesting
U 6= 0 situation treated below. First, the size of the oscillations is
maximized at J ∼ γ /2 as a result of an interplay of dissipation
and interference. Second, although 〈n2(φ = 0)〉 is suppressed and
eventually goes to zero for J� γ , the oscillations keep a cosine-like
behaviour as a function of φ.

In Fig. 2, we present our numerical results for experimentally
accessible observables of the systemwhen the interaction is switched
on (U > 0). Rescaled quantities J̃ and Ẽ are defined for the effective
two-cavity model as outlined in the Methods section. Do the
Josephson oscillations in 〈n2(φ)〉, as measured by detecting the light
emitted from the central cavity (Fig. 1b), remain intact? In Fig. 2a,
we plot 〈n2(φ)〉 for various values of the interaction at a pumping
strength of |Ẽ|/γ2 = 0.1. The size as well as the functional form of
the oscillations barely changes as U/J̃ is varied across a wide range
of values under weak-pumping conditions. This picture changes
dramatically when we pump the system more strongly, shown in
Fig. 2b for |Ẽ|/γ = 0.7. Here, the average population in the central
cavity can be sizeable and nonlinear effects are more pronounced.
In contrast to the weak-pumping case (Fig. 2a), the size of the
oscillations is suppressed to a great extent asU is increased. Besides
the suppression of visibility, Fig. 2b shows a strong deviation from
the cosine-like functional form, equation (3), as U/J̃ is increased
from zero (the behaviour forU/J̃�1 is shown in the inset).

Next we investigate how this crossover is reflected in the
photon statistics of light emitted from the central cavity. For this,
in Fig. 2c we plot the zero-time-delay second-order correlation
function g (2)

2 (0) (see the Methods section) as a function of the
scaled quantities U/γ2 and J̃/γ2. We find that g (2)

2 (0) shows a
sharp transition from Poissonian to sub-Poissonian light statistics
as the interaction strength U is increased. The threshold for
antibunched (sub-Poissonian) light generation,Uth, is a function of
J . For J̃/γ2� 1 the antibunching threshold is Uth(J̃ )∼ γ2, whereas
for J̃/γ2 � 1 Uth(J̃ ) ∼ γ + γ2. These two regimes are connected
by a smooth crossover region. This peculiar behaviour of the
antibunching threshold is related to the effective dissipation rates
of the coupled system as the coupling strength J̃ is varied. At small
J̃ , the coupling to the central cavity is perturbative; the nonlinearity
(that is, antibunching) therefore sets in when U is larger than the
broadening of the bare central cavity polariton states, that is, γ2.
As J̃ is increased, the coupling becomes non-perturbative and the
relevant eigenstates of the coupled system are superpositions of
centre and outer cavity states; such dressed states have broadening
contributions from both centre and outer cavities and therefore
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Figure 2 | Numerical solutions for the three-cavity system. a, Average population in the central cavity as a function of φ for different values of U/J̃, in the
weak-pumping regime (|Ẽ|/γ2=0.1): Josephson oscillations are barely modified as U is increased. b, The same quantity as in a, but for a stronger drive
(|Ẽ|/γ2=0.7): Josephson oscillations are suppressed by increasing the interaction strength. The inset shows a magnification of the curve calculated for
U/J̃= 10 (compare with Fig. 3b, inset). c, Second-order correlation function as a function of J̃ and U for γ /γ2= 5 under weak-pumping conditions,
|Ẽ|/γ2=0.1, showing the transition from Poissonian (red) to sub-Poissonian (blue) light statistics. The functional dependence Uth(J̃) is highlighted with a
dashed white line.
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Figure 3 | Numerical solutions for the waveguide-coupled limit. We assume the coherent states |〈p1,3〉| = 1. a, Second-order correlation function at zero
time delay for light emitted from the central cavity, as a function of U and J. A sharp crossover between Poissonian (red) and sub-Poissonian (blue)
statistics is seen in the U–J plane. b, Average population in the central cavity for J/γ2= 2 as a function of φ, for different values of U/J. The oscillations
approach the limiting case of equation (6) when U/J� 1. The inset is a zoom on the curve for U/J= 10, showing 〈n2(φ=0)〉→0.5 and a strong deviation
from cosine-like behaviour (compare with Fig. 2b, inset). c, g(2)

2 (0) and 〈n2(φ=0)〉 as a function of U/J for different values of J/γ2, showing a smooth
crossover from the delocalized to the localized regime for U/J> 1.

the nonlinearity now has to be larger than the broadening of
the dressed states for the system to show antibunching. A simple
expression for g (2)

2 (0) can be derived in the weak-pumping limit (see
the discussion in Supplementary Information), which captures all
the regimes discussed:

g (2)
2 (0)=

Γ 2

Γ 2+4α2(J̃ )U 2
(4)

where Γ =γ +γ2 and α(J̃ )= (4J̃ 2+γΓ )/(4J̃ 2+γ γ2). These results
are consistent with the expectation that strong photon nonlinearity
can lead to photon blockade1 in the central cavity, giving rise to
antibunching. Although the relative strength of U with respect to
tunnel coupling J̃ seems to matter at small couplings J̃/γ2 (that
is, Uth(J̃ ) is a monotonic function of J̃ ), at larger J̃ the relative
effect of U saturates. Note that the nature of the nonlinearity of
the system does not leave any footprint in the observables we have
considered. Indeed, the coupled system maps onto an effective
Jaynes–Cummings model, where the tunnel coupling strength
plays the role that is commonly played by the atom–cavity dipole
coupling in the original Jaynes–Cummings model15 (see Supple-
mentary Information). For U � J̃ , the deviation of the system
energy levels from a harmonic structure is linearly proportional to
U , and this determines themain behaviour of g (2)

2 (0).
In the limit γ→∞, or when an infinite number of linear cavities

are coupled on either side to the central cavity (Fig. 1c), we obtain a
band of bosonic modes, which mimic two external waveguides. In
this case the corresponding photon creation/annihilation operators
in equation (1) can be replaced by their average (coherent-state)
values, p1,3→〈p1,3〉 =−2iE1,3/γ . The effective Hamiltonian of the

system reduces to that of a single nonlinear cavity pumped by a
coherent field with amplitude Eeff=−2iJ (E1+E3)/γ , that is,

Ĥ ∼∆2p̂
†
2p̂2+Up̂†

2p̂
†
2p̂2p̂2+Eeffp̂

†
2+h.c. (5)

We choose parameters such that |Eeff| = J , that is, J acts as the
effective pumping rate. The steady-state results for g (2)

2 (0) and 〈n2〉
are shown in Fig. 3a,b, respectively. We find that g (2)

2 (0) shows a
sharp transition from Poissonian to sub-Poissonian light statistics
as the interaction strength U is increased. The threshold for
antibunched (sub-Poissonian) light generation,Uth, is a function of
J . For J/γ2� 1 the threshold goes as Uth∼ γ2; in the opposite limit
Uth∼ J . As in the previous case at small hoppings, the antibunching
sets in when U is larger than the broadening of the bare central
cavity polariton states (γ2). Much more interesting is the fact
that at larger hoppings the threshold scales with J , in contrast to
the case of three cavities (Fig. 2c). The crossover from Poissonian
to antibunched behaviour reflects in a clear way the crossover
from delocalized to localized states. As J is increased the relevant
eigenstates of the coupled system are superpositions of centre and
outer cavity states, whereas in the opposite case the good eigenstates
are the Fock states due to the onset of photon blockade.Wemay also
understand the dependence of the crossover on J by relating it to the
low-J limit of Fig. 2c: from the perspective of the central cavity, the
driven waveguide is analogous to a driven cavity with a dissipation
rate larger than all other energy scales.

Owing to the Heisenberg uncertainty relation, the crossover
from bunching to antibunching behaviour also manifests itself in
the phase dependence of 〈n2〉 shown in Fig. 3b. On increasing the
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interaction the visibility is strongly suppressed, and furthermore
there is a marked deviation from the simple cosine law found for
U = 0. An analytical expression for the function in the inset can
be found in the infinite-U limit, where equation (5) is replaced by a
two-level system coupled with a driven cavitymode,

〈n2〉=
cos2(φ/2)

2cos2(φ/2)+ (γ 2/8J |E|)2
(6)

which agrees with the numerical results (see Fig. 3b, inset). The
broadening of the dip at φ = π is proportional to γ 2/(4J |E|),
implying that the visibility goes to zero by increasing the field
(〈n2(φ = 0)〉→ 0.5). The behaviour of 〈n2(φ)〉 is again witness to
the crossover from the delocalized to the correlated regimes. For
large hopping the state of the system is approximately a coherent
state. Phases are locked (there are strong fluctuations in the number
operator) and the visibility is large. In the opposite case, owing to
photon blockade the state is close to a Fock state. Phase fluctuations
in the central cavity suppress the global coherence of the system and
hence the visibility. We note that, although the functional forms
are different, both 〈n2(φ = 0)〉 and g (2)

2 (0) show a crossover that
depends only on the dimensionless ratioU/J , as shown in Fig. 3c.

We believe that our results establish the use of photon
correlation measurements as effective probes that can reveal the
interplay between macroscopic coherence and interactions in
strongly correlated photonic systems, and may contain the key to
interpret possible phases of driven–dissipative quantum-nonlinear
cavity arrays that operate under non-equilibrium conditions.

Methods
The model in equation (1) is reformulated by introducing the canonically
transformedbosonic operators ŝ= (p̂1+p̂3)/

√
2 and d̂= (p̂1−p̂3)/

√
2, fromwhich

Ĥs = ∆(ŝ† ŝ+ p̂†
2 p̂2)+ J̃ (p̂

†
2 ŝ+ ŝ

†p̂2)+Up̂†
2 p̂

†
2 p̂2p̂2

+ Ẽ ŝ†+ Ẽ∗ ŝ, (7)

where we defined ∆k =∆ and we discarded the dynamics of the field d̂ ,
which is decoupled from p̂2. Rescaled quantities are defined as J̃ =

√
2J and

Ẽ=
√
2(E1+E3)/2. Thus, the dynamics of the full model (1) is equivalent to that of

two coupled bosonic fields: ŝ is coherently driven, whereas p̂2 is nonlinear. Losses
are taken into account within the quantum master equation in the Born–Markov
approximation for the system density matrix, equation (2), for the field operators ŝ
and p̂2 with dissipation rates γ and γ2, respectively.

Analytical solution. An analytical solution to the steady-state master equation can
be found in the non-interacting limit, U = 0. The equation of motion for a generic
operator expectation value, 〈Â〉, is ∂〈Â〉/∂t = 0= i〈[Ĥs,Â]〉ss+〈L[Â]〉ss, where
Ĥs= (J̃ p̂2+Ẽ)ŝ†+h.c., and the Liouvillian L[Â] is written as

L[Â] =
γ

2
(2ŝ†Âŝ− ŝ† ŝÂ− Âŝ† ŝ)+

γ2

2
(2p̂†

2Âp̂2

− p̂†
2 p̂2Â− Âp̂

†
2 p̂2)

Solving for p̂2 and ŝ, respectively, we obtain a system of two coupled equations, from
which the steady-state solution is found to be |〈p̂2〉ss| = |Ẽ|/{J̃ [1+γ γ2/(4J̃ 2)]},
and hence equation (3).

Numerical solution. Extensive numerical simulations for the effective model (7)
can be carried out fairly efficiently and in a reduced Hilbert space with respect to
the full model. After explicitly defining the operators in matrix form on a Fock
basis of bosonic number states, the steady-state density matrix for any given set of
parameters can be obtained by finding the eigenvector corresponding to the zero
eigenvalue of the linear operator equation L̂|ρ〉〉= λ|ρ〉〉, where |ρ〉〉 is the density
operator mapped into vectorial form, and L̂ is the linear matrix corresponding to
the Liouvillian operator in the right-hand side of equation (2) (refs 24,25). Once
|ρss〉〉 is obtained from L̂|ρss〉〉=λss|ρss〉〉with λss=0, we can recast it in matrix form
and calculate any observable in which we are interested. In particular, in this work
we deal with 〈n2〉=Tr{p̂†

2 p̂2ρss}, and the steady-state zero-time-delay second-order
correlation function g (2)

2 (τ = 0)=Tr{p̂†
2 p̂

†
2 p̂2p̂2ρss}/〈n2〉

2. To check convergence
with the number of Fock states in the basis as a function of J̃ , numerical results for
U = 0 are compared with equation (3).
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