Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vacuum-stimulated cooling of single atoms in three dimensions

Abstract

Controlling quantum dynamical processes is the key to practical applications of quantum physics, for example in quantum information science. The manipulation of light–matter interactions at the single-atom and single-photon level can be achieved in cavity quantum electrodynamics, in particular in the regime of strong coupling in which atom and cavity form a single entity. In the optical domain, this requires a single atom at rest inside a microcavity. Here we show that an orthogonal arrangement of a cooling laser, trapping laser and cavity vacuum gives rise to a unique combination of friction forces that act along all three directions. This combination of cooling forces is applied to catch and cool a single atom in a high-finesse cavity. The high cooling efficiency leads to a low temperature and an average single-atom trapping time of 17 s, during which the strongly coupled atom can be observed continuously.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic setup.
Figure 2: Single-atom traces and storage time.
Figure 3: Trapping time and friction forces as a function of the cavity detuning, ΔC.
Figure 4: Photon-count histogram measured for ΔC/2π=+4 MHz using 10 ms count intervals.

References

  1. Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity qed. Phys. Rev. Lett. 83, 4987–4990 (1999).

    Article  ADS  Google Scholar 

  2. McKeever, J. et al. State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003).

    Article  ADS  Google Scholar 

  3. McKeever, J., Buck, J. R., Boozer, A. D. & Kimble, H. J. Determination of the number of atoms trapped in an optical cavity. Phys. Rev. Lett. 93, 143601 (2004).

    Article  ADS  Google Scholar 

  4. Boca, A. et al. Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004).

    Article  ADS  Google Scholar 

  5. Maunz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004).

    Article  ADS  Google Scholar 

  6. Maunz, P. et al. Normal-mode spectroscopy of a single bound atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005).

    Article  ADS  Google Scholar 

  7. Mossberg, T. W., Lewenstein, M. & Gauthier, D. J. Trapping and cooling of atoms in a vacuum perturbed in a frequency-dependent manner. Phys. Rev. Lett. 67, 1723–1726 (1991).

    Article  ADS  Google Scholar 

  8. Doherty, A. C., Parkins, A. S., Tan, S. M. & Walls, D. F. Motion of a two-level atom in an optical cavity. Phys. Rev. A 56, 833–844 (1997).

    Article  ADS  Google Scholar 

  9. Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974–4977 (1997).

    Article  ADS  Google Scholar 

  10. Vuletić, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).

    Article  ADS  Google Scholar 

  11. Vuletić, V., Chan, H. W. & Black, A. T. Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A 64, 033405 (2001).

    Article  ADS  Google Scholar 

  12. Domokos, P., Vukics, A. & Ritsch, H. Anomalous Doppler-effect and polariton-mediated cooling of two-level atoms. Phys. Rev. Lett. 92, 103601 (2004).

    Article  ADS  Google Scholar 

  13. Murr, K. On the suppression of the diffusion and the quantum nature of a cavity mode. Optical bistability: Forces and friction in driven cavities. J. Phys. B 36, 2515–2537 (2003).

    Article  ADS  Google Scholar 

  14. Guthörlein, G. R., Keller, M., Hayasaka, K., Lange, W. & Walther, H. A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001).

    Article  ADS  Google Scholar 

  15. Mundt, A. B. et al. Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89, 103001 (2002).

    Article  ADS  Google Scholar 

  16. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  17. Dalibard, J. & Cohen-Tannoudji, C. Dressed-atom approach to atomic motion in laser light: The dipole force revisited. J. Opt. Soc. Am. B 2, 1707–1720 (1985).

    Article  ADS  Google Scholar 

  18. Taïeb, R., Dum, R., Cirac, J. I., Marte, P. & Zoller, P. Cooling and localization of atoms in laser-induced potential wells. Phys. Rev. A 49, 4876–4887 (1994).

    Article  ADS  Google Scholar 

  19. Cohen-Tannoudji, C. in Fundamental Systems in Quantum Optics, Les Houches, Session LIII, 1990 (eds Dalibard, J., Raimond, J. M. & Zinn-Justin, J.) 1–164 (Elsevier Science, North-Holland, Amsterdam, 1992).

    Google Scholar 

  20. Cirac, J. I., Blatt, R., Parkins, A. S. & Zoller, P. Laser cooling of trapped ions with polarization gradients. Phys. Rev. A 48, 1434–1445 (1993).

    Article  ADS  Google Scholar 

  21. Cirac, J. I., Lewenstein, M. & Zoller, P. Laser cooling a trapped atom in a cavity: Bad cavity limit. Phys. Rev. A 51, 1650–1655 (1995).

    Article  ADS  Google Scholar 

  22. Zippilli, S. & Morigi, G. Cooling trapped atoms in optical resonators. Preprint at http://arxiv.org/quant-ph/0506030 (2005).

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SPP 1078 and SFB 631) and the European Union (IST (QGATES) and IHP (CONQUEST) programs). We are also grateful to S. Webster for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Rempe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nußmann, S., Murr, K., Hijlkema, M. et al. Vacuum-stimulated cooling of single atoms in three dimensions. Nature Phys 1, 122–125 (2005). https://doi.org/10.1038/nphys120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing