Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor

Article metrics


Theories based on the coupling between spin fluctuations and fermionic quasiparticles are among the leading contenders to explain the origin of high-temperature superconductivity, but estimates of the strength of this interaction differ widely1. Here, we analyse the charge- and spin-excitation spectra determined by angle-resolved photoemission and inelastic neutron scattering, respectively, on the same crystals of the high-temperature superconductor YBa2Cu3O6.6. We show that a self-consistent description of both spectra can be obtained by adjusting a single parameter, the spin–fermion coupling constant. In particular, we find a quantitative link between two spectral features that have been established as universal for the cuprates, namely high-energy spin excitations2,3,4,5,6,7 and ‘kinks’ in the fermionic band dispersions along the nodal direction8,9,10,11,12. The superconducting transition temperature computed with this coupling constant exceeds 150 K, demonstrating that spin fluctuations have sufficient strength to mediate high-temperature superconductivity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Intensity of spin excitations along Q=q(2π,2π) resulting from numerical fits to the INS spectra of YBa2Cu3O6.6 at T=5 K.
Figure 2: Results of tight-binding fits of the Fermi surfaces determined by ARPES for the bonding and antibonding bands.
Figure 3: Comparison of experimental and theoretical ARPES intensities.
Figure 4: Nodal dispersion of the ARPES data for the bonding band compared with the same nodal dispersion of the calculation.


  1. 1

    Eschrig, M. The effect of collective spin-1 excitations on electronic spectra in high-Tc superconductors. Adv. Phys. 55, 47–183 (2006).

  2. 2

    Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Dogan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

  3. 3

    Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).

  4. 4

    Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780–785 (2007).

  5. 5

    Vignolle, B. et al. Two energy scales in the spin excitations of the high-temperature superconductor La2−xSrxCuO4 . Nature Phys. 3, 163–167 (2007).

  6. 6

    Lipscombe, O. J., Hayden, S. M., Vignolle, B., McMorrow, D. F. & Perring, T. G. Persistence of high-frequency spin fluctuations in overdoped superconducting La2−xSrxCuO4 (x=0.22). Phys. Rev. Lett. 99, 067002 (2007).

  7. 7

    Fauqué, B. et al. Dispersion of the odd magnetic resonant mode in nearly-optimally doped Bi2Sr2CaCu2O8+δ . Phys. Rev. B 76, 214512 (2007).

  8. 8

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

  9. 9

    Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).

  10. 10

    Kordyuk, A. A. et al. Constituents of the quasiparticle spectrum along the nodal direction of high-Tc cuprates. Phys. Rev. Lett. 97, 017002 (2006).

  11. 11

    Borisenko, S. V. et al. Kinks, nodal bilayer splitting and interband scattering in YBa2Cu3O6+x . Phys. Rev. Lett. 96, 117004 (2006).

  12. 12

    Zabolotnyy, V. B. et al. Momentum and temperature dependence of renormalization effects in the high-temperature superconductor YBa2Cu3O7−δ . Phys. Rev. B 76, 064519 (2007).

  13. 13

    Parks, R. D. (ed.) Superconductivity Vol. 1 (Dekker, 1969).

  14. 14

    Huang, Z. B., Hanke, W., Arrigoni, E. & Chubukov, A. V. Renormalization of the electron-spin-fluctuation interaction in the tt′–U Hubbard model. Phys. Rev. B 74, 184508 (2006).

  15. 15

    Dahm, T. & Tewordt, L. Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors. Phys. Rev. B 52, 1297–1308 (1995).

  16. 16

    Aichhorn, M., Arrigoni, E., Potthoff, M. & Hanke, W. Phase separation and competition of superconductivity and magnetism in the two-dimensional Hubbard model: From strong to weak coupling. Phys. Rev. B 76, 224509 (2007).

  17. 17

    Maier, T. A., Macridin, A., Jarrell, M. & Scalapino, D. J. Systematic analysis of a spin-susceptibility representation of the pairing interaction in the two-dimensional Hubbard model. Phys. Rev. B 76, 144516 (2007).

  18. 18

    Pailhès, S. et al. Doping dependence of bilayer resonant spin excitations in (Y,Ca)Ba2Cu3O6+x . Phys. Rev. Lett. 96, 257001 (2006).

  19. 19

    Chubukov, A. V. & Norman, M. R. Dispersion anomalies in cuprate superconductors. Phys. Rev. B 70, 174505 (2004).

  20. 20

    Graser, S., Hirschfeld, P. J. & Scalapino, D. J. Local quasiparticle lifetimes in a d-wave superconductor. Phys. Rev. B 77, 184504 (2008).

  21. 21

    Carbotte, J. P., Schachinger, E. & Basov, D. N. Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401, 354–356 (1999).

  22. 22

    Hwang, J., Timusk, T. & Gu, G. D. High-transition-temperature superconductivity in the absence of the magnetic-resonance mode. Nature 427, 714–717 (2004).

  23. 23

    Valla, T. Electronic interactions in strongly correlated systems: What is the ‘glue’ for high temperature superconductivity? Proc. SPIE 5932, 593203 (2005).

  24. 24

    Manske, D., Eremin, I. & Bennemann, K. H. Renormalization of the elementary excitations in hole- and electron-doped cuprates due to spin fluctuations. Phys. Rev. B 67, 134520 (2003).

  25. 25

    Cuk, T. et al. Coupling of the B1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ . Phys. Rev. Lett. 93, 117003 (2004).

  26. 26

    Reznik, D., Sangiovanni, G., Gunnarson, O. & Devereaux, T. P. Photoemission kinks and phonons in cuprates. Nature 455, E6–E7 (2008).

  27. 27

    Giustino, F., Cohen, M. L. & Louie, S. G. Small phonon contribution to the photoemission kink in the copper oxide superconductors. Nature 452, 975–978 (2008).

  28. 28

    Heid, R., Bohnen, K.-P., Zeyher, R. & Manske, D. Momentum dependence of the electron–phonon coupling and self-energy effects in superconducting YBa2Cu3O7 within the local density approximation. Phys. Rev. Lett. 100, 137001 (2008).

  29. 29

    Woo, H. et al. Magnetic energy change available to superconducting condensation in optimally doped YBa2Cu3O6.95 . Nature Phys. 2, 600–604 (2006).

  30. 30

    Pasupathy, A. N. et al. Electronic origin of the inhomogeneous pairing interaction in the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 320, 196–201 (2008).

Download references


This project is part of the Forschergruppe FOR538 of the German Research Foundation. D.J.S. acknowledges the Center for Nanophase Material Sciences at Oak Ridge National Laboratory, US Department of Energy. We thank P. Bourges, A. Ivanov and D. Inosov for discussions.

Author information

Correspondence to B. Keimer.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 163 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading