Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate

Abstract

Although the classical picture of crystallization depicts a simple and immediate transformation from an amorphous to a crystalline phase, it has been argued that, in selected systems, intermediate metastable phases exist before a stable state is finally reached. However, most experimental observations have been limited to colloids and proteins, for which the crystallization kinetics are fairly slow and the size is comparatively large. Here, we demonstrate for the first time in an inorganic compound at an atomic scale that an amorphous phase transforms into a stable crystalline state via intermediate crystalline phases, thus directly proving Ostwald’s rule of stages. Through in situ high-resolution electron microscopy in real time at a high temperature, we show the presence of metastable transient phases at an atomic scale during the crystallization of an olivine-type metal phosphate. These results suggest a new description for the kinetic pathway of crystallization in complex inorganic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: First series of in situ HREM images and corresponding FFTs during the crystallization of LiFePO4 at 450 C.
Figure 2: Second series of in situ HREM images and corresponding FFTs of a LiFePO4 nanocrystal at 450 C.
Figure 3: Atomic potential contour maps calculated by crystallographic image processing.
Figure 4: Third series of in situ HREM images of a LiFePO4 nanocrystal at 450 C.
Figure 5: Extra series of in situ HREM images of another LiFePO4 nanocrystal at 450 C.
Figure 6: Schematic diagram showing the transition pathway during the crystallization of LiFePO4.

Similar content being viewed by others

References

  1. Burda, C, Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shape. Chem. Rev. 105, 1025–1102 (2005).

    Article  Google Scholar 

  2. Oxtoby, D. W. Homogeneous nucleation—theory and experiment. J. Phys. Condens. Matter 4, 7627–7650 (1992).

    Article  ADS  Google Scholar 

  3. Oxtoby, D. W. Nucleation of first-order phase transitions. Acc. Chem. Res. 31, 91–97 (1998).

    Article  Google Scholar 

  4. Mullin, J. W. Crystallization 4th edn 181–288 (Elsevier, 2004).

    Google Scholar 

  5. Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22, 289–330 (1897).

    Google Scholar 

  6. Ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  Google Scholar 

  7. Vekilov, P. G. Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst. Growth Des. 4, 671–685 (2004).

    Article  Google Scholar 

  8. Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

    Article  ADS  Google Scholar 

  9. Anderson, V. J. & Lekkerkerker, H. N. W. Insight into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    Article  ADS  Google Scholar 

  10. Sanz, E., Valeriani, C., Frenkel, D. & Dijkstra, M. Evidence for out-of-equilibrium crystal nucleation in suspensions of oppositely charged colloids. Phys. Rev. Lett. 99, 055501 (2007).

    Article  ADS  Google Scholar 

  11. Anwar, J. & Boateng, P. K. Computer simulation of crystallization from solution. J. Am. Chem. Soc. 120, 9600–9640 (1998).

    Article  Google Scholar 

  12. Lutsko, J. F. & Nicolas, G. Theoretical evidence for a dense fluid precursor to crystallization. Phys. Rev. Lett. 96, 046102 (2006).

    Article  ADS  Google Scholar 

  13. Yau, S.-T. & Vekilov, P. G. Quasi-planar nucleus structure in apoferritin crystallization. Nature 406, 494–497 (2000).

    Article  ADS  Google Scholar 

  14. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    Article  ADS  Google Scholar 

  15. Gliko, O. et al. A metastable prerequisite for the growth of lumazine synthase crystals. J. Am. Chem. Soc. 127, 3433–3438 (2005).

    Article  Google Scholar 

  16. Boerrigter, S. X. M. et al. In situ observations of epitaxial polymorphic nucleation of the model steroid methyl analogue 17 norethindrone. J. Phys. Chem. B 106, 4725–4731 (2002).

    Article  Google Scholar 

  17. Stoica, C. et al. Epitaxial 2D nucleation of metastable polymorphs: A 2D version of Ostwald’s rule of stages. Cryst. Growth Des. 5, 975–981 (2005).

    Article  Google Scholar 

  18. Ross, F. M., Tersoff, J. & Tromp, R. M. Coarsening of self-assembled Ge quantum dots on Si(001). Phys. Rev. Lett. 80, 984–987 (1998).

    Article  ADS  Google Scholar 

  19. Hansen, P. L. et al. Atomic-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    Article  ADS  Google Scholar 

  20. Helveg, S. et al. Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004).

    Article  ADS  Google Scholar 

  21. Howe, J. M. & Saka, H. In situ transmission electron microscopy studies of the solid–liquid interfaces. MRS Bull. 29, 951–957 (2004).

    Article  Google Scholar 

  22. Sutter, P. W. & Sutter, E. A. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. Nature Mater. 6, 363–366 (2007).

    Article  ADS  Google Scholar 

  23. Hovmöller, S., Sjögren, A., Farrants, G., Sundberg, M. & Marinder, B.-O. Accurate atomic positions from electron microscopy. Nature 311, 238–241 (1984).

    Article  ADS  Google Scholar 

  24. Weirich, T. E., Ramlau, R., Simon, A., Hovmöller, S. & Zou, X. A crystal structure determined with 0.02 Å accuracy by electron microscopy. Nature 382, 144–146 (1996).

    Article  ADS  Google Scholar 

  25. Zou, X. & Hovmöller, S. Electron crystallography: Imaging and single-crystal diffraction from powders. Acta Crystallogr. A 64, 149–160 (2008).

    Article  ADS  Google Scholar 

  26. Santoro, R. P. & Newmann, R. E. Antiferromagnetism in LiFePO4 . Acta Crystallogr. 22, 344–347 (1967).

    Article  Google Scholar 

  27. Papike, J. J. & Cameron, M. Crystal chemistry of silicate minerals of geophysical interest. Rev. Geophys. Space Phys. 14, 37–80 (1976).

    Article  ADS  Google Scholar 

  28. Chung, S.-Y., Bloking, J. T. & Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater. 1, 123–128 (2002).

    Article  ADS  Google Scholar 

  29. Tang, P. & Holzwarth, N. A. W. Electronic structure of FePO4, LiFePO4, and related materials. Phys. Rev. B 68, 165107 (2003).

    Article  ADS  Google Scholar 

  30. International Tables for Crystallography 5th edn, Vol. A: Space-Group Symmetry (ed. Hahn, T.) (Springer, 2005).

  31. Billinge, S. J. L. & Levin, I. The problem with determining atomic structure at the nanoscale. Science 316, 561–565 (2007).

    Article  ADS  Google Scholar 

  32. Massa, W. Crystal Structure Determination 2nd edn (Springer, 2004).

    Book  Google Scholar 

  33. Hovmöller, S. CRISP: crystallographic image processing on a personal computer. Ultramicroscopy 41, 121–135 (1992).

    Article  Google Scholar 

  34. Gramm, F. et al. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444, 79–81 (2006).

    Article  ADS  Google Scholar 

  35. Baerlocher, C. et al. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315, 1113–1116 (2007).

    Article  ADS  Google Scholar 

  36. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  ADS  Google Scholar 

  37. Chung, S.-Y., Choi, S.-Y., Yamamoto, T. & Ikuhara, Y. Atomic-scale visualization of antisite defects in LiFePO4 . Phys. Rev. Lett. 100, 125502 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation, grant no. 2007-331-D00196.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.C. conceived, designed and carried out the experiments, analysed the data, interpreted and discussed the results and wrote the paper. Y.-M.K., J.-G.K. and Y.-J.K. provided the TEM facilities and contributed the acquisition of TEM data.

Corresponding author

Correspondence to Sung-Yoon Chung.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 1729 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, SY., Kim, YM., Kim, JG. et al. Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nature Phys 5, 68–73 (2009). https://doi.org/10.1038/nphys1148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing