Abstract
Entanglement is central both to the foundations of quantum theory and, as a novel resource, to quantum information science. The theory of entanglement establishes basic laws that govern its manipulation, in particular the non-increase of entanglement under local operations on the constituent particles. Such laws aim to draw from them formal analogies to the second law of thermodynamics; however, whereas in the second law the entropy uniquely determines whether a state is adiabatically accessible from another, the manipulation of entanglement under local operations exhibits a fundamental irreversibility, which prevents the existence of such an order. Here, we show that a reversible theory of entanglement and a rigorous relationship with thermodynamics may be established when considering all non-entangling transformations. The role of the entropy in the second law is taken by the asymptotic relative entropy of entanglement in the basic law of entanglement. We show the usefulness of this approach to general resource theories and to quantum information theory.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Attainability and Lower Semi-continuity of the Relative Entropy of Entanglement and Variations on the Theme
Annales Henri Poincaré Open Access 15 May 2023
-
No second law of entanglement manipulation after all
Nature Physics Open Access 23 January 2023
-
Asymptotic State Transformations of Continuous Variable Resources
Communications in Mathematical Physics Open Access 02 December 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Change history
17 May 2022
Editor’s Note: Readers are alerted that the conclusions of this Article rely on a proof of the generalised quantum Stein's lemma in Commun. Math. Phys. 295, 791 (2010) that has been called into question. Details are available in a preprint https://arxiv.org/abs/2205.02813. A further editorial response will follow the resolution of these issues for this Article.
References
Callen, H. B. Thermodynamics and an Introduction to Thermostatistics (Wiley, 1985).
Giles, R. Mathematical Foundations of Thermodynamics (Pergamon, 1964).
Lieb, E. H. & Yngvason, J. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1–96 (1999).
Lieb, E. H. & Yngvason, J. Current Developments in Mathematics, 2001 Vol. 89 (International Press, 2002).
Plenio, M. B. & Virmani, S. An introduction to entanglement measures. Quantum. Inf. Comput. 7, 1–51 (2007).
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. (in the press); preprint at <http://arxiv.org/abs/quant-ph/0702225> (2007).
Bennett, C. H. & Divincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).
Einstein, A., Podolsky, B. & Rosen, N. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).
Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1992).
Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996).
Horodecki, M., Horodecki, P. & Horodecki, R. Mixed-state entanglement and distillation: Is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239–5242 (1998).
Vidal, G. & Cirac, J. I. Irreversibility in asymptotic manipulations of entanglement. Phys. Rev. Lett. 86, 5803–5806 (2001).
Yang, D., Horodecki, M., Horodecki, R. & Synak-Radtke, B. Irreversibility for all bound entangled states. Phys. Rev. Lett. 95, 190501 (2005).
Popescu, S. & Rohrlich, D. Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319–R3321 (1997).
Horodecki, P., Horodecki, R. & Horodecki, M. Entanglement and thermodynamical analogies. Acta Phys. Slov. 48, 141–156 (1998).
Plenio, M. B. & Vedral, V. Entanglement in quantum information theory. Contemp. Phys. 39, 431–466 (1998).
Vedral, V. & Plenio, M. B. Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998).
Horodecki, M., Oppenheim, J. & Horodecki, R. Are the laws of entanglement theory thermodynamical? Phys. Rev. Lett. 89, 240403 (2002).
Werner, R. F. Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989).
Vidal, G. & Tarrach, R. Robustness of entanglement. Phys. Rev. A 59, 141–155 (1999).
Harrow, A. W. & Nielsen, M. A. Robustness of quantum gate in the presence of noise. Phys. Rev. A 68, 012308 (2003).
Vedral, V., Plenio, M. B., Rippin, M. A. & Knight, P. L. Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997).
Hiai, F. & Petz, D. The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99–114 (1991).
Ogawa, T. & Nagaoka, H. Strong converse and Stein’s lemma in the quantum hypothesis testing. IEEE Trans. Inf. Theory 46, 2428–2433 (2000).
Renner, R. Symmetry of large physical systems implies independence of subsystems. Nature Phys. 3, 645–649 (2007).
Eisert, J. & Plenio, M. B. Introduction to the basics of entanglement theory in continuous-variable systems. Int. J. Quant. Inf. 1, 479–506 (2003).
Gour, G. & Spekkens, R. W. The resource theory of quantum reference frames: manipulation and monotones. New. J. Phys. 10, 033023 (2008).
Maurer, U. Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39, 733–742 (1993).
Jonathan, D. & Plenio, M. B. Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83, 3566–3569 (1999).
Brandão, F. G. S. L., Horodecki, M., Plenio, M. B. & Virmani, S. Remarks on the equivalence of full additivity and monotonicity for the entanglement cost. Open Syst. Inf. Dyn. 14, 333–339 (2007).
Brandão, F. G. S. L. & Plenio, M. B. A reversible theory of entanglement and its relation to the second law. Preprint at <http://arxiv.org/abs/0710.5827> (2007).
Donald, M. J. & Horodecki, M. Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257–260 (1999).
Rains, E. M. A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47, 2921–2933 (2001).
Acknowledgements
We gratefully thank K. Audenaert, J. Eisert, A. Grudka, M. Horodecki, R. Horodecki, S. Virmani and R.F. Werner for useful discussions and correspondence. This work is part of the QIP-IRC supported by EPSRC and the Integrated Project Qubit Applications (QAP) supported by the IST directorate and was supported by the Brazilian agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and a Royal Society Society Wolfson Research Merit Award.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brandão, F., Plenio, M. Entanglement theory and the second law of thermodynamics. Nature Phys 4, 873–877 (2008). https://doi.org/10.1038/nphys1100
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1100
This article is cited by
-
No second law of entanglement manipulation after all
Nature Physics (2023)
-
Asymptotic State Transformations of Continuous Variable Resources
Communications in Mathematical Physics (2023)
-
Detecting coherence with respect to general quantum measurements
Science China Information Sciences (2023)
-
Attainability and Lower Semi-continuity of the Relative Entropy of Entanglement and Variations on the Theme
Annales Henri Poincaré (2023)
-
Transformations of multilevel coherent states under coherence-preserving operations
Science China Physics, Mechanics & Astronomy (2021)