High-sensitivity diamond magnetometer with nanoscale resolution

  • An Erratum to this article was published on 01 February 2011


The detection of weak magnetic fields with high spatial resolution is an important problem in diverse areas ranging from fundamental physics and material science to data storage and biomedical science. Here, we explore a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on nitrogen-vacancy centres in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic-field imager combining spatial resolution ranging from micrometres to millimetres with a sensitivity approaching a few fT Hz−1/2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overview of a diamond-based magnetometer.
Figure 2: Control sequences for various operation modes of the magnetometer and corresponding sensitivities to magnetic fields.
Figure 3: Sensitivity per root volume (ηVa.c.) at high nitrogen-vacancy-centre density, for the a.c.-field echo measurement scheme.
Figure 4: Illustration of high-spatial-resolution magnetometry with a diamond nanocrystal.

Change history

  • 01 February 2011

    In the version of this Article originally published, the x axis of Fig. 2b was labelled incorrectly. This has now been corrected in the HTML and PDF versions.


  1. 1

    Bending, S. J. Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999).

  2. 2

    Chang, A. M. et al. Scanning Hall probe microscopy. Appl. Phys. Lett. 61, 1974–1976 (1992).

  3. 3

    Budker, D. et al. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002).

  4. 4

    Auzinsh, M. et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93, 173002 (2004).

  5. 5

    Savukov, I. M., Seltzer, S. J., Romalis, M. V. & Sauer, K. L. Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005).

  6. 6

    Kominis, K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

  7. 7

    Vengalattore, M. et al. High-resolution magnetometry with a spinor Bose–Einstein condensate. Phys. Rev. Lett. 98, 200801 (2007).

  8. 8

    Zhao, K. F. & Wu, Z. Evanescent wave magnetometer. Appl. Phys. Lett. 89, 261113 (2006).

  9. 9

    Mamin, H. J., Poggio, M., Degen, C. L. & Rugar, D. Nuclear magnetic resonance imaging with 90-nm resolution. Nature Nanotech. 2, 301–306 (2007).

  10. 10

    Seton, H., Hutchison, J. & Bussell, D. A tuned SQUID amplifier for MRI based on a DOIT flux locked loop. IEEE Trans. Appl. Supercond. 7, 3213–3216 (1997).

  11. 11

    Schlenga, K. et al. Low-field magnetic resonance imaging with a high-Tc DC superconducting quantum interference device. Appl. Phys. Lett. 75, 3695–3697 (1999).

  12. 12

    Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

  13. 13

    Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

  14. 14

    Hanson, R., Mendoza, F. M., Epstein, R. J. & Awschalom, D. D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).

  15. 15

    Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

  16. 16

    Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys. 1, 94–98 (2005).

  17. 17

    Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

  18. 18

    Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

  19. 19

    Kühn, S., Hettich, C., Schmitt, C., Poizat, J.-Ph. & Sandoghdar, V. Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J. Microsc. 202, 2–6 (2001).

  20. 20

    Chang, D. E., Sorensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

  21. 21

    Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

  22. 22

    Salikhov, K. M. & Tsvetkov, Yu. D. in Time Domain Electron Spin Resonance (eds Kevan, L. & Schwartz, R. N.) (Wiley, New York, 1979).

  23. 23

    Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Preprint at <http://arxiv.org/abs/0805.0327> (2008).

  24. 24

    Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007).

  25. 25

    Khutsishvili, G. R. Spin diffusion. Sov. Phys. Usp. 8, 743–769 (1966).

  26. 26

    Rabeau, J. R. et al. Implantation of labelled single nitrogen vacancy centers in diamond using 15N. Appl. Phys. Lett. 88, 023113 (2006).

  27. 27

    Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

  28. 28

    Charnock, F. T. & Kennedy, T. A. Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond. Phys. Rev. B 64, 041201R (2001).

  29. 29

    Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

  30. 30

    Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

  31. 31

    Prins, J. F. Activation of boron-dopant atoms in ion-implanted diamonds. Phys. Rev. B 38, 5576–5584 (1988).

  32. 32

    Slichter, C. P. Principles of Magnetic Resonance 3rd edn (Springer, Berlin, 1996).

  33. 33

    Mehring, M. Principle of High Resolution NMR in Solids (Springer, New York, 1983).

  34. 34

    Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. & Lukin, M. D. Many-body protected entanglement generation in interacting spin systems. Phys. Rev. A 77, 052305 (2008).

  35. 35

    Khodjasteh, K. & Lidar, D. A. Performance of deterministic dynamical decoupling schemes: Concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007).

  36. 36

    Mansfield, P. Symmetrized pulse sequences in high resolution NMR in solids. J. Phys. C 4, 1444–1452 (1971).

  37. 37

    Sekatskii, S. K. & Letokhov, V. S. Nanometer-resolution scanning optical microscope with resonance excitation of the fluorescence of the samples from a single-atom excited center. JETP Lett. 63, 311–315 (1996).

  38. 38

    Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

  39. 39

    Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

  40. 40

    Mamin, H. J., Budakian, R., Chui, B. W. & Rugar, D. Magnetic resonance force microscopy of nuclear spins: Detection and manipulation of statistical polarization. Phys. Rev. B 72, 024413 (2005).

  41. 41

    Meriles, C. A. Optically detected nuclear magnetic resonance at the sub-micron scale. J. Magn. Reson. 176, 207–214 (2005).

  42. 42

    Veauvy, C., Hasselbach, K. & Mailly, D. Scanning μ-superconduction quantum interference device force microscope. Rev. Sci. Instrum. 73, 3825–3830 (2002).

  43. 43

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Naturedoi:10.1038/nature07279 (2008).

  44. 44

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Naturedoi:10.1038/nature07278 (2008).

  45. 45

    Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

  46. 46

    van Oort, E., Manson, N. B. & Glasbeek, M. Optically detected spin coherence of the diamond N-V centre in its triplet ground state. J. Phys. C: Solid State Phys. 21, 4385–4391 (1988).

Download references


We gratefully acknowledge conversations with D. Awschalom, A. Cohen, J. Doyle, G. Dutt, J. Maze, E. Togan, P. Stanwix, J. Hodges, S. Hong and M. P. Ledbetter. This work was supported by the NSF, ONR, MURI, DARPA and the David and Lucile Packard Foundation. J.M.T. is supported by the Pappalardo Fellowship; P.C. is supported by the ITAMP Fellowship.

Author information

Correspondence to M. D. Lukin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taylor, J., Cappellaro, P., Childress, L. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys 4, 810–816 (2008). https://doi.org/10.1038/nphys1075

Download citation

Further reading