Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-sensitivity diamond magnetometer with nanoscale resolution

An Erratum to this article was published on 01 February 2011

This article has been updated


The detection of weak magnetic fields with high spatial resolution is an important problem in diverse areas ranging from fundamental physics and material science to data storage and biomedical science. Here, we explore a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on nitrogen-vacancy centres in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic-field imager combining spatial resolution ranging from micrometres to millimetres with a sensitivity approaching a few fT Hz−1/2.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of a diamond-based magnetometer.
Figure 2: Control sequences for various operation modes of the magnetometer and corresponding sensitivities to magnetic fields.
Figure 3: Sensitivity per root volume (ηVa.c.) at high nitrogen-vacancy-centre density, for the a.c.-field echo measurement scheme.
Figure 4: Illustration of high-spatial-resolution magnetometry with a diamond nanocrystal.

Change history

  • 01 February 2011

    In the version of this Article originally published, the x axis of Fig. 2b was labelled incorrectly. This has now been corrected in the HTML and PDF versions.


  1. Bending, S. J. Local magnetic probes of superconductors. Adv. Phys. 48, 449–535 (1999).

    Article  ADS  Google Scholar 

  2. Chang, A. M. et al. Scanning Hall probe microscopy. Appl. Phys. Lett. 61, 1974–1976 (1992).

    Article  ADS  Google Scholar 

  3. Budker, D. et al. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002).

    Article  ADS  Google Scholar 

  4. Auzinsh, M. et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93, 173002 (2004).

    Article  ADS  Google Scholar 

  5. Savukov, I. M., Seltzer, S. J., Romalis, M. V. & Sauer, K. L. Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005).

    Article  ADS  Google Scholar 

  6. Kominis, K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

    Article  ADS  Google Scholar 

  7. Vengalattore, M. et al. High-resolution magnetometry with a spinor Bose–Einstein condensate. Phys. Rev. Lett. 98, 200801 (2007).

    Article  ADS  Google Scholar 

  8. Zhao, K. F. & Wu, Z. Evanescent wave magnetometer. Appl. Phys. Lett. 89, 261113 (2006).

    Article  ADS  Google Scholar 

  9. Mamin, H. J., Poggio, M., Degen, C. L. & Rugar, D. Nuclear magnetic resonance imaging with 90-nm resolution. Nature Nanotech. 2, 301–306 (2007).

    Article  ADS  Google Scholar 

  10. Seton, H., Hutchison, J. & Bussell, D. A tuned SQUID amplifier for MRI based on a DOIT flux locked loop. IEEE Trans. Appl. Supercond. 7, 3213–3216 (1997).

    Article  ADS  Google Scholar 

  11. Schlenga, K. et al. Low-field magnetic resonance imaging with a high-Tc DC superconducting quantum interference device. Appl. Phys. Lett. 75, 3695–3697 (1999).

    Article  ADS  Google Scholar 

  12. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article  ADS  Google Scholar 

  13. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  ADS  Google Scholar 

  14. Hanson, R., Mendoza, F. M., Epstein, R. J. & Awschalom, D. D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).

    Article  ADS  Google Scholar 

  15. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  16. Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys. 1, 94–98 (2005).

    Article  ADS  Google Scholar 

  17. Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    Article  ADS  Google Scholar 

  18. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  19. Kühn, S., Hettich, C., Schmitt, C., Poizat, J.-Ph. & Sandoghdar, V. Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J. Microsc. 202, 2–6 (2001).

    Article  MathSciNet  Google Scholar 

  20. Chang, D. E., Sorensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  21. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    Article  ADS  Google Scholar 

  22. Salikhov, K. M. & Tsvetkov, Yu. D. in Time Domain Electron Spin Resonance (eds Kevan, L. & Schwartz, R. N.) (Wiley, New York, 1979).

    Google Scholar 

  23. Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Preprint at <> (2008).

  24. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007).

    Article  ADS  Google Scholar 

  25. Khutsishvili, G. R. Spin diffusion. Sov. Phys. Usp. 8, 743–769 (1966).

    Article  ADS  Google Scholar 

  26. Rabeau, J. R. et al. Implantation of labelled single nitrogen vacancy centers in diamond using 15N. Appl. Phys. Lett. 88, 023113 (2006).

    Article  ADS  Google Scholar 

  27. Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    Article  ADS  Google Scholar 

  28. Charnock, F. T. & Kennedy, T. A. Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond. Phys. Rev. B 64, 041201R (2001).

    Article  ADS  Google Scholar 

  29. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  ADS  Google Scholar 

  30. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  31. Prins, J. F. Activation of boron-dopant atoms in ion-implanted diamonds. Phys. Rev. B 38, 5576–5584 (1988).

    Article  ADS  Google Scholar 

  32. Slichter, C. P. Principles of Magnetic Resonance 3rd edn (Springer, Berlin, 1996).

    Google Scholar 

  33. Mehring, M. Principle of High Resolution NMR in Solids (Springer, New York, 1983).

    Book  Google Scholar 

  34. Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. & Lukin, M. D. Many-body protected entanglement generation in interacting spin systems. Phys. Rev. A 77, 052305 (2008).

    Article  ADS  Google Scholar 

  35. Khodjasteh, K. & Lidar, D. A. Performance of deterministic dynamical decoupling schemes: Concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007).

    Article  ADS  Google Scholar 

  36. Mansfield, P. Symmetrized pulse sequences in high resolution NMR in solids. J. Phys. C 4, 1444–1452 (1971).

    Article  ADS  Google Scholar 

  37. Sekatskii, S. K. & Letokhov, V. S. Nanometer-resolution scanning optical microscope with resonance excitation of the fluorescence of the samples from a single-atom excited center. JETP Lett. 63, 311–315 (1996).

    Article  ADS  Google Scholar 

  38. Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

    Article  ADS  Google Scholar 

  39. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  ADS  Google Scholar 

  40. Mamin, H. J., Budakian, R., Chui, B. W. & Rugar, D. Magnetic resonance force microscopy of nuclear spins: Detection and manipulation of statistical polarization. Phys. Rev. B 72, 024413 (2005).

    Article  ADS  Google Scholar 

  41. Meriles, C. A. Optically detected nuclear magnetic resonance at the sub-micron scale. J. Magn. Reson. 176, 207–214 (2005).

    Article  ADS  Google Scholar 

  42. Veauvy, C., Hasselbach, K. & Mailly, D. Scanning μ-superconduction quantum interference device force microscope. Rev. Sci. Instrum. 73, 3825–3830 (2002).

    Article  ADS  Google Scholar 

  43. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Naturedoi:10.1038/nature07279 (2008).

  44. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Naturedoi:10.1038/nature07278 (2008).

  45. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    Article  ADS  Google Scholar 

  46. van Oort, E., Manson, N. B. & Glasbeek, M. Optically detected spin coherence of the diamond N-V centre in its triplet ground state. J. Phys. C: Solid State Phys. 21, 4385–4391 (1988).

    Article  ADS  Google Scholar 

Download references


We gratefully acknowledge conversations with D. Awschalom, A. Cohen, J. Doyle, G. Dutt, J. Maze, E. Togan, P. Stanwix, J. Hodges, S. Hong and M. P. Ledbetter. This work was supported by the NSF, ONR, MURI, DARPA and the David and Lucile Packard Foundation. J.M.T. is supported by the Pappalardo Fellowship; P.C. is supported by the ITAMP Fellowship.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. D. Lukin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taylor, J., Cappellaro, P., Childress, L. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys 4, 810–816 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing