Crystallization of strongly interacting photons in a nonlinear optical fibre


Understanding strongly correlated quantum systems is a central problem in many areas of physics. The collective behaviour of interacting particles gives rise to diverse fundamental phenomena such as confinement in quantum chromodynamics, electron fractionalization in the quantum Hall regime and phase transitions in unconventional superconductors and quantum magnets. Such systems typically involve massive particles, but optical photons can also interact with one another in a nonlinear medium. In practice, however, such interactions are often very weak. Here we describe a technique that enables the creation of a strongly correlated quantum gas of photons using one-dimensional optical systems with tight field confinement and coherent photon trapping techniques. The confinement enables the generation of large, tunable optical nonlinearities via the interaction of photons with a nearby cold atomic gas. In its extreme, we show that a quantum light field can undergo fermionization in such one-dimensional media, which can be probed via standard photon correlation measurements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Illustration of fields and atoms comprising the system.
Figure 2: Density–density correlation function g(2)(z,z′=0) for an expanding TG gas of photons with initial density profile nph(z)=n0(1−z2/z02)1/2.
Figure 3: Maximum interaction parameter γmax as functions of optical depth and single-atom cooperativity, optimized over the detuning Δ0.


  1. 1

    Boyd, R. W. Nonlinear Optics (Academic, New York, 1992).

  2. 2

    Haroche, S. & Raimond, J. M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, New York, 2006).

  3. 3

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

  4. 4

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–675 (2005).

  5. 5

    Auslaender, O. M. et al. Spin–charge separation and localization in one dimension. Science 308, 88–92 (2005).

  6. 6

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  7. 7

    Tonks, L. The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955–963 (1936).

  8. 8

    Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960).

  9. 9

    Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

  10. 10

    Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

  11. 11

    Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).

  12. 12

    Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006).

  13. 13

    Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007).

  14. 14

    Na, N., Utsunomiya, S., Tian, L. & Yamamoto, Y. Strongly correlated photons in a two-dimensional array of photonic crystal microcavities. Phys. Rev. A 77, 031803(R) (2008).

  15. 15

    Hartmann, M. J. & Plenio, M. B. Strong photon nonlinearities and photonic Mott insulators. Phys. Rev. Lett. 99, 103601 (2007).

  16. 16

    Rossini, D. & Fazio, R. Mott-insulating and glassy phases of polaritons in 1D arrays of coupled cavities. Phys. Rev. Lett. 99, 186401 (2007).

  17. 17

    Nayak, K. P. et al. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express 15, 5431–5438 (2007).

  18. 18

    Ghosh, S., Sharping, J. E., Ouzounov, D. G. & Gaeta, A. L. Resonant optical interactions with molecules confined in photonic band-gap fibers. Phys. Rev. Lett. 94, 093902 (2005).

  19. 19

    Knight, J. C. Photonic crystal fibers. Nature 424, 847–851 (2003).

  20. 20

    Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

  21. 21

    Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

  22. 22

    Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

  23. 23

    Bajcsy, M., Zibrov, A. S. & Lukin, M. D. Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003).

  24. 24

    Bajcsy, M, Andre, A., Zibrov, A. S. & Lukin, M. D. Nonlinear optics with stationary pulses of light. Phys. Rev. Lett. 94, 063902 (2005).

  25. 25

    Lai, Y. & Haus, H. A. Quantum theory of solitons in optical fibers. II. Exact solution. Phys. Rev. A 40, 854–866 (1989).

  26. 26

    Mazets, I. E. & Kurizki, G. How different are multiatom quantum solitons from mean-field solitons? Europhys. Lett. 76, 196–202 (2006).

  27. 27

    Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963).

  28. 28

    Korepin, V. E., Bogoliubov, N. M. & Izergin, A. G. Quantum Inverse Scattering Method and Correlation Functions (Cambridge Univ. Press, Cambridge, 1993).

  29. 29

    Caux, J.-S. & Calabrese, P. Dynamical density–density correlations in the one-dimensional Bose gas. Phys. Rev. A 74, 031605 (2006).

  30. 30

    Caux, J.-S., Calabrese, P. & Slavnov, N. A. One-particle dynamical correlations in the one-dimensional Bose gas. J. Stat. Mech. P01008 (2007).

  31. 31

    Haldane, F. D. M. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981); erratum 48, 569 (1982).

  32. 32

    Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

  33. 33

    Friedel, J. Metallic alloys. Nuovo Cimento 7, 287–311 (1958).

  34. 34

    Lenard, A. One-dimensional impenetrable bosons in thermal equilibrium. J. Math. Phys. 7, 1268–1272 (1966).

  35. 35

    Cazalilla, M. A. Effect of suddenly turning on interactions in the Luttinger model. Phys. Rev. Lett. 97, 156403 (2006).

  36. 36

    Polkovnikov, A. & Gritsev, V. Breakdown of the adiabatic limit in low-dimensional gapless systems. Nature Phys. 4, 477–481 (2008).

  37. 37

    Rigol, M. & Muramatsu, A. Free expansion of impenetrable bosons on one-dimensional optical lattices. Mod. Phys. Lett. B 19, 861–881 (2005).

  38. 38

    Minguzzi, A. & Gangardt, D. M. Exact coherent states of a harmonically confined Tonks–Girardeau gas. Phys. Rev. Lett. 94, 240404 (2005).

  39. 39

    Castin, Y. & Dum, R. Bose–Einstein condensates in time dependent traps. Phys. Rev. Lett. 77, 5315–5319 (1996).

  40. 40

    Kagan, Yu., Surkov, E. L. & Shlyapnikov, G. V. Evolution of a Bose-condensed gas under variations of the confining potential. Phys. Rev. A 54, R1753–R1756 (1996).

  41. 41

    Dowling, J. P. Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A 57, 4736–4746 (1998).

  42. 42

    Bouyer, P. & Kasevich, M. A. Heisenberg-limited spectroscopy with degenerate Bose–Einstein gases. Phys. Rev. A 56, R1083–R1086 (2002).

  43. 43

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

  44. 44

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  45. 45

    Schulz, H. J. in Mesoscopic Quantum Physics, Proc. Les Houches Summer School LXI (eds Akkermans, E., Montambaux, G., Pichard, J. & Zinn-Justin, J.) 533–603 (Elsevier, Amsterdam, 1995).

  46. 46

    Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. A polaritonic two-component Bose–Hubbard model. New J. Phys. 10, 033011 (2008).

  47. 47

    Mas˘alas, M. & Fleischhauer, M. Scattering of dark-state polaritons in optical lattices and quantum phase gates for photons. Phys. Rev. A 69, 061801(R) (2004).

  48. 48

    Harris, S. E. Electromagnetically induced transparency with matched pulses. Phys. Rev. Lett. 70, 552–555 (1993).

  49. 49

    Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, New York, 2004).

  50. 50

    Slavnov, N. A. Nonequal-time current correlation function in a one-dimensional Bose gas. Theor. Math. Phys. 82, 273–282 (1990).

Download references


We gratefully acknowledge support from the NSF, Harvard–MIT CUA, DARPA, Air Force and Packard Foundation.

Author information

Correspondence to E. A. Demler.

Supplementary information

Supplementary Information

Supplementary Information (PDF 66 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, D., Gritsev, V., Morigi, G. et al. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nature Phys 4, 884–889 (2008).

Download citation

Further reading