Quantum states and phases in driven open quantum systems with cold atoms

Abstract

An open quantum system, the time evolution of which is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the coupling between the system and the reservoir. This provides a route towards preparing many-body states and non-equilibrium quantum phases by quantum-reservoir engineering. Here, we discuss the example of a driven dissipative Bose–Einstein condensate of bosons and of paired fermions, where atoms in an optical lattice are coupled to a bath of Bogoliubov excitations and the atomic current represents local dissipation. In the absence of interactions, the lattice gas is driven into a pure state with long-range order. Weak interactions lead to a weakly mixed state, which in three dimensions can be understood as a depletion of the condensate, and in one and two dimensions exhibits properties reminiscent of a Luttinger liquid or a Kosterlitz–Thouless critical phase at finite temperature, with the role of the ‘finite temperature’ taken by the interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Driven dissipative condensate.
Figure 2: Appearance of quasi-long-range order during the time evolution.

References

  1. 1

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

  2. 2

    Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

  3. 3

    Kinoshita, T., Wenger, T. R. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

  4. 4

    Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

  5. 5

    Fölling, S. et al. Direct observation of second-order atom tunneling. Nature 448, 1029–1032 (2007).

  6. 6

    Zwierlein, M. W., Schirotzek, A., Schunck, C. H. & Ketterle, W. Fermionic superfluidity with imbalanced spin populations and the quantum phase transition to the normal state. Science 311, 492–496 (2006).

  7. 7

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

  8. 8

    Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000).

  9. 9

    Góral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002).

  10. 10

    Rezayi, E. H., Read, N. & Cooper, N. R. Incompressible liquid state of rapidly rotating bosons at filling factor 3/2. Phys. Rev. Lett. 95, 160404 (2005).

  11. 11

    Büchler, H. P., Hermele, M., Huber, S. D., Fisher, M. P. A. & Zoller, P. Atomic quantum simulation for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).

  12. 12

    Rey, A. M., Gritsev, V., Bloch, I., Demler, E. & Lukin, M. D. Preparation and detection of magnetic quantum phases in optical superlattices. Phys. Rev. Lett. 99, 140601 (2007).

  13. 13

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  14. 14

    Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, Heidelberg, 2000).

  15. 15

    Baumgartner, B., Narnhofer, H. & Thirring, W. Analysis of quantum semigroups with GKS Lindblad generators: I. Simple generators. J. Phys. A 41, 065201–065220 (2008).

  16. 16

    Baumgartner, B. & Narnhofer, H. Analysis of quantum semigroups with GKS Lindblad generators: II. General. Preprint at <http://arxiv.org/abs/0806.3164> (2008).

  17. 17

    Kraus, B. et al. Preparation of entangled states by quantum Markov processes. Phys. Rev. A (in the press); preprint at <http://arxiv.org/abs/0803.1463> (2008).

  18. 18

    Aspect, A., Arimondo, E., Kaiser, R, Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).

  19. 19

    Kasevich, M. & Chu, S. Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741–1744 (1992).

  20. 20

    Gottesman, D. Stabilizer Codes and Quantum Error Correction. Thesis, California Inst. Technol. (1997).

  21. 21

    Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

  22. 22

    Verstraete, F., Wolf, M., Perez-Garcia, D. & Cirac, J. I. Projected entangled states: Properties and applications. Int. J. Mod. Phys. B 20, 5142–5153 (2006).

  23. 23

    Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation. Preprint at <http://arxiv.org/abs/0803.1447> (2008).

  24. 24

    Griessner, A., Daley, A. J., Clark, S. R., Jaksch, D. & Zoller, P. Dark-state cooling of atoms by superfluid immersion. Phys. Rev. Lett. 97, 220403 (2006).

  25. 25

    Moskalenko, S. A. & Snoke, D. W. Bose–Einstein Condensation of Excitons and Biexcitons (Cambridge Univ. Press, Cambridge, 2000).

  26. 26

    Yang, C. N. η pairing and off-diagonal long-range order in a Hubbard model. Phys. Rev. Lett. 63, 2144–2147 (1989).

  27. 27

    Demler, E., Hanke, W. & Zhang, S.-C. SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. 76, 909–974 (2004).

  28. 28

    Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

  29. 29

    Schön, G. & Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–413 (1990).

  30. 30

    Haldane, F. D. M. Effective harmonic-fluid approach to low energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981).

  31. 31

    Bistritzer, R. & Altman, E. Intrinsic dephasing in one dimensional ultracold atom interferometers. Proc. Natl Acad. Sci. USA 104, 9955–9959 (2007).

  32. 32

    Burkov, A. A., Lukin, M. D. & Demler, E. Decoherence dynamics in low-dimensional cold atom interferometers. Phys. Rev. Lett. 98, 200404 (2007).

  33. 33

    Donner, T. et al. Critical behavior of a trapped interacting Bose gas. Science 315, 1556–1558 (2007).

  34. 34

    Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium decoherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007).

Download references

Acknowledgements

We thank E. Altman, E. Demler and M. Lukin for discussions. Work at the University of Innsbruck is supported by the Austrian Science Foundation and EU grants SCALA and OLAQI.

Author information

Correspondence to S. Diehl.

Supplementary information

Supplementary Information

Supplementary Information (PDF 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diehl, S., Micheli, A., Kantian, A. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys 4, 878–883 (2008). https://doi.org/10.1038/nphys1073

Download citation

Further reading