Abstract
An open quantum system, the time evolution of which is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the coupling between the system and the reservoir. This provides a route towards preparing many-body states and non-equilibrium quantum phases by quantum-reservoir engineering. Here, we discuss the example of a driven dissipative Bose–Einstein condensate of bosons and of paired fermions, where atoms in an optical lattice are coupled to a bath of Bogoliubov excitations and the atomic current represents local dissipation. In the absence of interactions, the lattice gas is driven into a pure state with long-range order. Weak interactions lead to a weakly mixed state, which in three dimensions can be understood as a depletion of the condensate, and in one and two dimensions exhibits properties reminiscent of a Luttinger liquid or a Kosterlitz–Thouless critical phase at finite temperature, with the role of the ‘finite temperature’ taken by the interactions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).
Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).
Kinoshita, T., Wenger, T. R. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).
Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).
Fölling, S. et al. Direct observation of second-order atom tunneling. Nature 448, 1029–1032 (2007).
Zwierlein, M. W., Schirotzek, A., Schunck, C. H. & Ketterle, W. Fermionic superfluidity with imbalanced spin populations and the quantum phase transition to the normal state. Science 311, 492–496 (2006).
Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).
Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000).
Góral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002).
Rezayi, E. H., Read, N. & Cooper, N. R. Incompressible liquid state of rapidly rotating bosons at filling factor 3/2. Phys. Rev. Lett. 95, 160404 (2005).
Büchler, H. P., Hermele, M., Huber, S. D., Fisher, M. P. A. & Zoller, P. Atomic quantum simulation for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).
Rey, A. M., Gritsev, V., Bloch, I., Demler, E. & Lukin, M. D. Preparation and detection of magnetic quantum phases in optical superlattices. Phys. Rev. Lett. 99, 140601 (2007).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, Heidelberg, 2000).
Baumgartner, B., Narnhofer, H. & Thirring, W. Analysis of quantum semigroups with GKS Lindblad generators: I. Simple generators. J. Phys. A 41, 065201–065220 (2008).
Baumgartner, B. & Narnhofer, H. Analysis of quantum semigroups with GKS Lindblad generators: II. General. Preprint at <http://arxiv.org/abs/0806.3164> (2008).
Kraus, B. et al. Preparation of entangled states by quantum Markov processes. Phys. Rev. A (in the press); preprint at <http://arxiv.org/abs/0803.1463> (2008).
Aspect, A., Arimondo, E., Kaiser, R, Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).
Kasevich, M. & Chu, S. Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741–1744 (1992).
Gottesman, D. Stabilizer Codes and Quantum Error Correction. Thesis, California Inst. Technol. (1997).
Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).
Verstraete, F., Wolf, M., Perez-Garcia, D. & Cirac, J. I. Projected entangled states: Properties and applications. Int. J. Mod. Phys. B 20, 5142–5153 (2006).
Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation. Preprint at <http://arxiv.org/abs/0803.1447> (2008).
Griessner, A., Daley, A. J., Clark, S. R., Jaksch, D. & Zoller, P. Dark-state cooling of atoms by superfluid immersion. Phys. Rev. Lett. 97, 220403 (2006).
Moskalenko, S. A. & Snoke, D. W. Bose–Einstein Condensation of Excitons and Biexcitons (Cambridge Univ. Press, Cambridge, 2000).
Yang, C. N. η pairing and off-diagonal long-range order in a Hubbard model. Phys. Rev. Lett. 63, 2144–2147 (1989).
Demler, E., Hanke, W. & Zhang, S.-C. SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. 76, 909–974 (2004).
Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).
Schön, G. & Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–413 (1990).
Haldane, F. D. M. Effective harmonic-fluid approach to low energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981).
Bistritzer, R. & Altman, E. Intrinsic dephasing in one dimensional ultracold atom interferometers. Proc. Natl Acad. Sci. USA 104, 9955–9959 (2007).
Burkov, A. A., Lukin, M. D. & Demler, E. Decoherence dynamics in low-dimensional cold atom interferometers. Phys. Rev. Lett. 98, 200404 (2007).
Donner, T. et al. Critical behavior of a trapped interacting Bose gas. Science 315, 1556–1558 (2007).
Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium decoherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007).
Acknowledgements
We thank E. Altman, E. Demler and M. Lukin for discussions. Work at the University of Innsbruck is supported by the Austrian Science Foundation and EU grants SCALA and OLAQI.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 73 kb)
Rights and permissions
About this article
Cite this article
Diehl, S., Micheli, A., Kantian, A. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys 4, 878–883 (2008). https://doi.org/10.1038/nphys1073
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1073
This article is cited by
-
Entanglement and work statistics in the driven open system
Quantum Information Processing (2024)
-
Bifurcations and Chaos in Open Quantum Systems
Radiophysics and Quantum Electronics (2023)
-
Engineered dissipation for quantum information science
Nature Reviews Physics (2022)
-
Loss leads the way to utopia
Nature Physics (2022)
-
Speed up generation of steady-state entanglement with Lyapunov control engineered dissipative ancilla
Quantum Information Processing (2022)