Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Little evidence for dynamic divergences in ultraviscous molecular liquids

Abstract

The physics of the ultraviscous liquid phase preceding glass formation continues to pose major problems that remain unsolved. It is actively debated, for instance, whether the marked increase of the relaxation time reflects an underlying phase transition to a state of infinite relaxation time. To elucidate the empirical evidence for this intriguing scenario, some of the most accurate relaxation-time data available for any class of ultraviscous liquids—those obtained by dielectric relaxation experiments on organic liquids just above the glass transition—were compiled. Analysis of data for 42 liquids shows that there is no compelling evidence for the Vogel–Fulcher–Tammann (VFT) prediction that the relaxation time diverges at a finite temperature. We conclude that theories with a dynamic divergence of the VFT form lack a direct experimental basis.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Relaxation time as a function of temperature for typical organic liquids supercooled into the ultraviscous phase.
Figure 2: Relaxation time data identified from dielectric loss peaks for all of the 42 organic ultraviscous liquids used in the analysis.
Figure 3: The VFT and Avramov equations compared with data.
Figure 4: Temperature indices.
Figure 5: Standard deviation from fits to data of the VFT equation and two alternative fitting functions with the same number of parameters but no dynamic divergence, FF1 and FF2 of equations (6) and (7).

References

  1. Brawer, S. Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, 1985).

    Google Scholar 

  2. Debenedetti, P. G. Metastable Liquids: Concepts and Principles (Princeton Univ. Press, Princeton, 1996).

    Google Scholar 

  3. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article  Google Scholar 

  4. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    ADS  Article  Google Scholar 

  5. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    ADS  Article  Google Scholar 

  6. Binder, K. & Kob, W. Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, Singapore, 2005).

    Book  Google Scholar 

  7. Dyre, J. C. The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).

    ADS  Article  Google Scholar 

  8. Vogel, H. Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Zeit. 22, 645–646 (1921).

    Google Scholar 

  9. Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925).

    Article  Google Scholar 

  10. Tammann, G. Glasses as supercooled liquids. J. Soc. Glass Technol. 9, 166–185 (1925).

    Google Scholar 

  11. Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).

    Article  Google Scholar 

  12. Laughlin, W. T. & Uhlman, D. R. Viscous flow in simple organic liquids. J. Phys. Chem. 76, 2317–2325 (1972).

    Article  Google Scholar 

  13. Breitling, S. M. & Magill, J. H. A model for the Magill-Li viscosity-temperature relation. J. Appl. Phys. 45, 4167–4171 (1974).

    ADS  Article  Google Scholar 

  14. Angell, C. A. Oxide glasses in light of the ideal glass concept. I. Ideal and nonideal transitions and departures from ideality. J. Am. Ceram. Soc. 51, 117–125 (1968).

    Article  Google Scholar 

  15. Gibbs, J. H. & DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958).

    ADS  Article  Google Scholar 

  16. Adams, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    ADS  Article  Google Scholar 

  17. DiMarzio, E. A. & Yang, A. J. M. Configurational entropy approach to the kinetics of glasses. J. Res. Natl Inst. Stand. Technol. 102, 135–157 (1997).

    Article  Google Scholar 

  18. Eckmann, J.-P. & Procaccia, I. Ergodicity and slowing down in glass-forming systems with soft potentials: No finite-temperature singularities. Preprint at <http://arxiv.org/abs/0802.4346> (2008).

  19. Edwards, S. F. Theory of glasses. Polymer 17, 933–937 (1976).

    Article  Google Scholar 

  20. Edwards, S. F. The glass transition. Int. J. Mod. Phys. B 6, 1587–1594 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  21. Anderson, P. W. in Ill-Condensed Matter (eds Balian, R., Maynard, R. & Toulouse, G.) 159–261 (North-Holland, Amsterdam, 1979).

    Google Scholar 

  22. Bouchaud, J. P. & Biroli, G. On the Adam–Gibbs–Kirkpatrick–Thirumalai–Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).

    ADS  Article  Google Scholar 

  23. Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids. Ann. Rev. Phys. Chem. 58, 235–266 (2007).

    ADS  Article  Google Scholar 

  24. Götze, W. & Sjögren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    ADS  Article  Google Scholar 

  25. Stillinger, F. H. Supercooled liquids, glass transition and the Kauzmann paradox. J. Chem. Phys. 88, 7818–7825 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  26. Kivelson, D., Tarjus, G., Zhao, X. & Kivelson, S. A. Fitting of viscosity: Distinguishing the temperature dependences predicted by various models of supercooled liquids. Phys. Rev. E 53, 751–758 (1996).

    ADS  Article  Google Scholar 

  27. Garrahan, J. P. & Chandler, D. Coarse-grained microscopic model of glass-formers. Proc. Natl Acad. Sci. 100, 9710–9714 (2003).

    ADS  Article  Google Scholar 

  28. Langer, J. S. The mysterious glass transition. Phys. Today 8–9 (February 2007).

    Article  Google Scholar 

  29. Angell, C. A. & Smith, D. L. Test of the entropy basis of the Vogel–Tammann–Fulcher equation—dielectric relaxation of polyalcohols near TG . J. Phys. Chem. 86, 3845–3852 (1982).

    Article  Google Scholar 

  30. Richert, R. & Angell, C. A. Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016–9026 (1998).

    ADS  Article  Google Scholar 

  31. Angell, C. A. Entropy and fragility in supercooling liquids. J. Res. Natl Inst. Stand. Technol. 102, 171–185 (1997).

    Article  Google Scholar 

  32. Tanaka, H. Relation between thermodynamics and kinetics of glass-forming liquids. Phys. Rev. Lett. 90, 055701 (2003).

    ADS  Article  Google Scholar 

  33. Huth, H., Wang, L.-M., Schick, C. & Richert, R. Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol. J. Chem. Phys. 126, 104503 (2007).

    ADS  Article  Google Scholar 

  34. Harrison, G. The Dynamic Properties of Supercooled Liquids (Academic, New York, 1976).

    Google Scholar 

  35. Avramov, I. Viscosity in disordered media. J. Non-Cryst. Solids 351, 3163–3173 (2005).

    ADS  Article  Google Scholar 

  36. Bässler, H. Viscous flow in supercooled liquids analyzed in terms of transport theory for random media with energetic disorder. Phys. Rev. Lett. 58, 767–770 (1987).

    ADS  Article  Google Scholar 

  37. Litovitz, T. A. Temperature dependence of the viscosity of associated liquids. J. Chem. Phys. 7, 1088–1089 (1952).

    ADS  Article  Google Scholar 

  38. Barlow, A. J. & Lamb, J. The visco-elastic behaviour of lubricating oils under cyclic shearing stress. Proc. R. Soc. A 253, 52–69 (1959).

    ADS  MATH  Google Scholar 

  39. Barlow, A. J., Lamb, J. & Matheson, A. J. Viscous behaviour of supercooled liquids. Proc. R. Soc. A 292, 322–342 (1966).

    ADS  Google Scholar 

  40. Stickel, F., Fischer, E. W. & Richert, R. Dynamics of glass-forming liquids. I. Temperature-derivative analysis of dielectric data. J. Chem. Phys. 102, 6251–6257 (1995).

    ADS  Article  Google Scholar 

  41. Stillinger, F. H. A topographic view of supercooled liquid and glass formation. Science 267, 1935–1939 (1995).

    ADS  Article  Google Scholar 

  42. Schrøder, T. B., Sastry, S., Dyre, J. C. & Glotzer, S. C. Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. J. Chem. Phys. 22, 9834–9840 (2000).

    ADS  Article  Google Scholar 

  43. Dyre, J. C. & Olsen, N. B. Landscape equivalent of the shoving model. Phys. Rev. B 69, 042501 (2004).

    ADS  Article  Google Scholar 

  44. O’Connell, P. A. & McKenna, G. B. Arrhenius-like temperature dependence of the segmental relaxation below Tg . J. Chem. Phys. 110, 11054–11060 (1999).

    ADS  Article  Google Scholar 

  45. Shi, X. F., Mandanici, A. & McKenna, G. B. Shear stress relaxation and physical aging study on simple glass-forming materials. J. Chem. Phys. 125, 174507 (2005).

    ADS  Article  Google Scholar 

  46. Simon, S. L., Sobieski, J. W. & Plazek, D. J. Volume and enthalpy recovery of polystyrene. Polymer 42, 2555–2567 (2001).

    Article  Google Scholar 

  47. Echeverria, I., Kolek, P. L., Plazek, D. J. & Simon, S. L. Enthalpy recovery, creep and creep-recovery measurements during physical aging of amorphous selenium. J. Non-Cryst. Solids 324, 242–255 (2003).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

For kindly providing data to this study, we are indebted to S. Benkhof, T. Blochowicz, T. Christensen, L. F. del Castillo, R. Diaz-Calleja, L.-T. Duong, K. Duvvuri, G. Eska, C. Gainaru, A. Garcia-Bernabe, S. Hensel-Bielowka, W. Huang, N. Ito, B. Jakobsen, E. Kaminska, M. Koehler, A. Kudlik, A. Loidl, P. Lunkenheimer, D. V. Matyushov, M. Mierzwa, P. Medick, K. L. Ngai, K. Niss, V. N. Novikov, M. Paluch, S. Pawlus, L. C. Pardo, S. Putselyk, E. L. Quitevis, J. R. Rajian, R. Richert, A. Rivera, E. A. Rössler, M. J. Sanchis, N.V. Surovtsev, C. Tschirwitz, L.-M. Wang and J. Wiedersich. The centre for viscous liquid dynamics ‘Glass and Time’ is sponsored by the Danish National Research Foundation (DNRF).

Author information

Authors and Affiliations

Authors

Contributions

Project planning and data analysis were carried out by T.H. and J.C.D., experimental work by A.I.N. and N.B.O.

Corresponding author

Correspondence to Jeppe C. Dyre.

Supplementary information

Supplementary Information

Supplementary Information (PDF 228 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hecksher, T., Nielsen, A., Olsen, N. et al. Little evidence for dynamic divergences in ultraviscous molecular liquids. Nature Phys 4, 737–741 (2008). https://doi.org/10.1038/nphys1033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1033

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing