Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evanescent single-molecule biosensing with quantum-limited precision

Abstract

Sensors that are able to detect and track single unlabelled biomolecules are an important tool to understand biomolecular dynamics and interactions as well as for medical diagnostics operating at their ultimate detection limits1,2,3,4,5,6,7. Recently, exceptional sensitivity has been achieved using the strongly enhanced evanescent fields provided by optical microcavities2,4,5,8 and plasmonic resonators1,6,7. However, at high field intensities, photodamage to the biological specimen becomes increasingly problematic9,10,11,12. Here, we introduce an evanescent biosensor that operates at the fundamental precision limit due to the quantization of light. This allows a four orders of magnitude reduction in optical intensity, while maintaining state-of-the-art sensitivity. It enables quantum noise-limited tracking of single biomolecules as small as 3.5 nm, and monitoring of surface–molecule interactions over extended periods. By achieving quantum noise-limited precision, our approach provides a path towards quantum-enhanced single-molecule biosensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Quantum noise-limited region.
Figure 3: Nanoparticle detection.
Figure 4: Biomolecule detection.

Similar content being viewed by others

References

  1. Dantham, V. R. et al. Label-free detection of single protein using a nanoplasmonic–photonic hybrid microcavity. Nano Lett. 13, 3347–3351 (2013).

    Article  ADS  Google Scholar 

  2. Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010).

    Article  ADS  Google Scholar 

  3. Li, B.-B. et al. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl Acad. Sci. USA 111, 14657–14662 (2014).

    Article  ADS  Google Scholar 

  4. Vollmer, F., Arnold, S. & Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl Acad. Sci. USA 105, 20701–20704 (2008).

    Article  ADS  Google Scholar 

  5. Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotech. 9, 933–939 (2014).

    Article  ADS  Google Scholar 

  6. Zijlstra, P., Paulo, P. M. R. & Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotech. 7, 379–382 (2012).

    Article  ADS  Google Scholar 

  7. Pang, Y. & Gordon, R. Optical trapping of a single protein. Nano Lett. 12, 402–406 (2012).

    Article  ADS  Google Scholar 

  8. Kim, E., Baaske, M. D., Schuldes, I., Wilsch, P. S. & Vollmer, F. Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. Sci. Adv. 3, 1603044 (2017).

    Article  ADS  Google Scholar 

  9. Mirsaidov, U. et al. Optimal optical trap for bacterial viability. Phys. Rev. E 78, 021910 (2008).

    Article  ADS  Google Scholar 

  10. Sowa, Y. et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916–919 (2005).

    Article  ADS  Google Scholar 

  11. Landry, M. P., McCall, P. M., Qi, Z. & Chemla, Y. R. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys. J. 97, 2128–2136 (2009).

    Article  ADS  Google Scholar 

  12. Wäldchen, S., Lehmann, J., Klein, T., Van de Linde, S. & Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 5, 15348 (2015).

    Article  ADS  Google Scholar 

  13. Knittel, J., Swaim, J. D., McAuslan, D. L., Brawley, G. A. & Bowen, W. P. Back-scatter based whispering gallery mode sensing. Sci. Rep. 3, 2974 (2013).

    Article  ADS  Google Scholar 

  14. Lu, T. et al. High sensitivity nanoparticle detection using optical microcavities. Proc. Natl Acad. Sci. USA 108, 5976–5979 (2011).

    Article  ADS  Google Scholar 

  15. Swaim, J. D., Knittel, J. & Bowen, W. P. Tapered nanofiber trapping of high-refractive-index nanoparticles. Appl. Phys. Lett. 103, 203111 (2013).

    Article  ADS  Google Scholar 

  16. Yu, X.-C. et al. Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment. Adv. Mater. 26, 7462–7467 (2014).

    Article  Google Scholar 

  17. Taylor, M. A. et al. Biological measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013).

    Article  ADS  Google Scholar 

  18. Kitamura, K., Tokunaga, M., Iwane, A. H. & Yanagida, T. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397, 129–134 (1999).

    Article  ADS  Google Scholar 

  19. Piliarik, M. & Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014).

    Article  ADS  Google Scholar 

  20. Park, S., Choi, S. Q., Song, C., Kim, M. W. & Choi, M. C. Surface charge effects on optical trapping of nanometer-sized lipid vesicles. Soft Matter 10, 8406–8412 (2014).

    Article  ADS  Google Scholar 

  21. Stoylov, S. P. et al. Electric dipole moments of Escherichia coli HB 101. Bioelectrochemistry 75, 50–54 (2009).

    Article  Google Scholar 

  22. Larsen, A. E. & Grier, D. G. Like-charge attractions in metastable colloidal crystallites. Nature 385, 230–233 (1997).

    Article  ADS  Google Scholar 

  23. Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

    Article  ADS  Google Scholar 

  24. Baaske, M. D. & Vollmer, F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat. Photon. 10, 733–739 (2016).

    Article  ADS  Google Scholar 

  25. Sun, V. & Armani, A. M. Real-time detection of lipid bilayer assembly and detergent-initiated solubilization using optical cavities. Appl. Phys. Lett. 106, 071103 (2015).

    Article  ADS  Google Scholar 

  26. Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nat. Photon. 5, 318–321 (2011).

    Article  ADS  Google Scholar 

  27. Mayor, U., Johnson, C. M., Daggett, V. & Fersht, A. R. Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl Acad. Sci. USA 97, 13518–13522 (2000).

    Article  ADS  Google Scholar 

  28. Taylor, M. A. & Bowen, W. P. Quantum metrology and its application in biology. Phys. Rep. 615, 1–59 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  29. Taylor, M., Knittel, J. & Bowen, W. P. Optical lock-in particle tracking in optical tweezers. Opt. Express 21, 8018–8024 (2013).

    Article  ADS  Google Scholar 

  30. Bachor, H. A. & Ralph, T. C. A Guide to Experiments in Quantum Optics (Wiley, 2004).

Download references

Acknowledgements

This work was supported by the Australian Research Council Discovery Project (contract no. DP140100734) and by the Air Force Office of Scientific Research and Asian Office of Aerospace Research and Development (grant no. FA2386-14-1-4046). W.P.B. acknowledges support through the Australian Research Council Future Fellowship scheme FF140100650. M.A.T. is supported by a fellowship from the Human Frontiers Science Program. The authors also thank B.-B. Li, J. D. Swaim and Y. Gagnepain for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.P.B. conceived and led the project. M.A.T. contributed towards the conceptual design. N.P.M. performed the experiments and data analysis, with contributions from L.S.M. Samples were prepared by N.P.M. and M.W. The manuscript was written by N.P.M., W.P.B. and L.S.M.

Corresponding author

Correspondence to W. P. Bowen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauranyapin, N., Madsen, L., Taylor, M. et al. Evanescent single-molecule biosensing with quantum-limited precision. Nature Photon 11, 477–481 (2017). https://doi.org/10.1038/nphoton.2017.99

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.99

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing