Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons


Modulating the amplitude and phase of light is at the heart of many applications such as wavefront shaping1, transformation optics2,3, phased arrays4, modulators5 and sensors6. Performing this task with high efficiency and small footprint is a formidable challenge7,8. Metasurfaces5,9 and plasmonics10 are promising, but metals exhibit weak electro-optic effects. Two-dimensional materials, such as graphene, have shown great performance as modulators with small drive voltages11,12. Here, we show a graphene plasmonic phase modulator that is capable of tuning the phase between 0 and 2π in situ. The device length of 350 nm is more than 30 times shorter than the 10.6 μm free-space wavelength. The modulation is achieved by spatially controlling the plasmon phase velocity in a device where the spatial carrier density profile is tunable. We provide a scattering theory for plasmons propagating through spatial density profiles. This work constitutes a first step towards two-dimensional transformation optics3 for ultracompact modulators7 and biosensing13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of device and measurement principle.
Figure 2: Working principle.
Figure 3: Measurement of full device and a phase shift of π.
Figure 4: Phase shift and reflection magnitude.


  1. 1

    Dickey, F. M. Laser Beam Shaping: Theory and Techniques (CRC, 2014).

    Google Scholar 

  2. 2

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  Article  Google Scholar 

  6. 6

    Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982).

    ADS  Article  Google Scholar 

  7. 7

    Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    ADS  Article  Google Scholar 

  8. 8

    Liu, K., Ye, C. R., Khan, S. & Sorger, V. J. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photon. Rev. 9, 172–194 (2015).

    ADS  Article  Google Scholar 

  9. 9

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  10. 10

    Dionne, J., Diest, K., Sweatlock, L. & Atwater, H. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Mohsin, M. et al. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep. 5, 10967 (2015).

    ADS  Article  Google Scholar 

  12. 12

    Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

    ADS  Article  Google Scholar 

  13. 13

    Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    ADS  Article  Google Scholar 

  14. 14

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Article  Google Scholar 

  15. 15

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    ADS  Article  Google Scholar 

  17. 17

    Wang, G., Liu, X., Lu, H. & Zeng, C. Graphene plasmonic lens for manipulating energy flow. Sci. Rep. 4, 1–7 (2014).

    Google Scholar 

  18. 18

    Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotech. 8, 821–825 (2013).

    ADS  Article  Google Scholar 

  19. 19

    Chen, J. et al. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett. 13, 6210–6215 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    ADS  Article  Google Scholar 

  21. 21

    Phillips, P. L., Knight, J. C., Pottage, J. M., Kakarantzas, G. & Russell, P. S. J. Direct measurement of optical phase in the near field. Appl. Phys. Lett. 76, 541–543 (2000).

    ADS  Article  Google Scholar 

  22. 22

    Balistreri, M. L. M., Korterik, J. P., Kuipers, L. & Van Hulst, N. F. Local observations of phase singularities in optical fields in waveguide structures. Phys. Rev. Lett. 85, 294–297 (2000).

    ADS  Article  Google Scholar 

  23. 23

    Li, Z. et al. Plasmonic metasurfaces to steer infrared light. Sci. Rep. 5, 12423 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 16–18 (2005).

    Article  Google Scholar 

  26. 26

    Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, 1999).

  27. 27

    Liu, M.-H. Theory of carrier density in multigated doped graphene sheets with quantum correction. Phys. Rev. B 87, 125427 (2013).

    ADS  Article  Google Scholar 

  28. 28

    Polini, M. et al. Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Torre, I., Katsnelson, M. I., Diaspro, A., Pellegrini, V. & Polini, M. Lippmann-Schwinger theory for two-dimensional plasmon scattering. Preprint at http://arXiv.org/abs/1702.04925 (2017).

  30. 30

    Garcia-Pomar, J. L., Nikitin, A. Y. & Martin-Moreno, L. Scattering of graphene plasmons by defects in the graphene sheet. ACS Nano 7, 4988–4994 (2013).

    Article  Google Scholar 

  31. 31

    Haffner, C. et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photon. 9, 525–528 (2015).

    ADS  Article  Google Scholar 

  32. 32

    Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    ADS  Article  Google Scholar 

  33. 33

    Hosseini, A. et al. Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator. Opt. Express 20, 12318–12325 (2012).

    ADS  Article  Google Scholar 

  34. 34

    Wang, Z. et al. Experimental demonstration of graphene plasmons working close to the near-infrared window. Opt. Lett. 41, 5345–5348 (2016).

    ADS  Article  Google Scholar 

  35. 35

    Gómez-Díaz, J. S. & Perruisseau-Carrier, J. Graphene-based plasmonic switches at near infrared frequencies. Opt. Express 21, 15490–15504 (2013).

    ADS  Article  Google Scholar 

Download references


We thank A. J. Huber, K.-J. Tielrooij, I. Epstein and W. Heni for fruitful discussions, and D. Davydovskaya and G. Navickaite for assistance in the clean room. Open source software was used (www.matplotlib.org, www.python.org, www.inkscape.org). F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, the ERC starting grant (307806, CarbonLight), the Government of Catalonia through the SGR grant (2014-SGR-1535), the Mineco grants Ramón y Cajal (RYC-2012-12281) and Plan Nacional (FIS2013-47161-P), and project GRASP (FP7-ICT-2013-613024-GRASP). F.H.L.K. and R.H. acknowledge support by the EC under Graphene Flagship (contract no. CNECT-ICT-696656). Y.G. and J.H. acknowledge support from the US Office of Naval Research N00014-13-1-0662. M.P. is extremely grateful for the financial support granted by the ICFO during a visit in August 2016 and acknowledges Fondazione Istituto Italiano di Tecnologia. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI grant numbers JP26248061, JP15K21722 and JP25106006.

Author information




A.W., M.B.L. and F.H.L.K. conceived the experiment. A.W. performed the experiments and simulations, analysed the data and wrote the manuscript. Y.G. and C.T. fabricated the devices. I.T. and M.P. developed the LS-RPA. M.B.L. helped with simulations and data analysis. K.W. and T.T. synthesized the h-BN. R.H., J.H. and F.H.L.K. supervised the work. All authors contributed to the scientific discussion and manuscript revisions.

Corresponding author

Correspondence to Frank H. L. Koppens.

Ethics declarations

Competing interests

R.H. is co-founder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1081 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woessner, A., Gao, Y., Torre, I. et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nature Photon 11, 421–424 (2017). https://doi.org/10.1038/nphoton.2017.98

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing