Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Planar metasurface retroreflector

Abstract

Metasurfaces are two-dimensional arrangements of subwavelength scatterers that control the propagation of optical waves1,2,3. Here, we show that cascaded metasurfaces, each performing a predefined mathematical transformation4, provide a new optical design framework5 that enables new functionalities not yet demonstrated with single metasurfaces. Specifically, we demonstrate that retroreflection can be achieved with two vertically stacked planar metasurfaces, the first performing a spatial Fourier transform and its inverse, and the second imparting a spatially varying momentum to the Fourier transform of the incident light. Using this concept, we fabricate and test a planar monolithic near-infrared retroreflector composed of two layers of silicon nanoposts, which reflects light along its incident direction with a normal incidence efficiency of 78% and a large half-power field of view of 60°. The metasurface retroreflector demonstrates the potential of cascaded metasurfaces for implementing novel high-performance components, and enables low-power and low-weight passive optical transmitters6,7,8.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Planar retroreflector concept.
Figure 2: Transmissive and reflective metasurfaces forming the retroreflector.
Figure 3: Monolithic planar retroreflector made of two metasurfaces.
Figure 4: Retroreflection profile and efficiency.
Figure 5: Characterization of the wavefront and polarization modifications by the retroreflector.

Similar content being viewed by others

References

  1. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  2. Zhang, L., Mei, S., Huang, K. & Qiu, C.-W. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4, 818–833 (2016).

    Article  Google Scholar 

  3. Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotech. 11, 23–36 (2016).

    Article  ADS  Google Scholar 

  4. Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  5. Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

    Article  ADS  Google Scholar 

  6. Gilbreath, G. C. Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles. Opt. Eng. 40, 1348–1356 (2001).

    Article  ADS  Google Scholar 

  7. Rabinovich, W. S. et al. A cat's eye multiple quantum-well modulating retro-reflector. IEEE Photon. Technol. Lett. 15, 461–463 (2003).

    Article  ADS  Google Scholar 

  8. Zhou, L. X., Kahn, J. M. & Pister, K. S. J. Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication. J. Microelectromech. Syst. 12, 233–242 (2003).

    Article  Google Scholar 

  9. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081–1083 (1998).

    Article  ADS  Google Scholar 

  10. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16, 1143–1156 (1999).

    Article  ADS  Google Scholar 

  11. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  ADS  Google Scholar 

  12. Vo, S. et al. Sub-wavelength grating lenses with a twist. IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).

    Article  Google Scholar 

  13. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    Article  ADS  Google Scholar 

  14. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  ADS  Google Scholar 

  15. Ni, X., Wong, Z. J., Mrejen, M., Wang, Y. & Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310–1314 (2015).

    Article  ADS  Google Scholar 

  16. Kamali, S. M., Arbabi, A., Arbabi, E., Horie, Y. & Faraon, A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7, 11618 (2016).

    Article  ADS  Google Scholar 

  17. Takatsuji, T., Goto, M., Osawa, S., Yin, R. M. & Kurosawa, T. Whole-viewing-angle cat's-eye retroreflector as a target of laser trackers. Meas. Sci. Technol. 10, 87–90 (1999).

    Article  Google Scholar 

  18. Griggs, S. P., Mark, M. B. & Feldman, B. J. Dynamic optical tags. Proc. SPIE 5441, 151 (2004).

    Article  ADS  Google Scholar 

  19. Warneke, B. A. et al. An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks. IEEE Sensors 2, 1510–1515 (2002).

    Chapter  Google Scholar 

  20. Ozawa, K. Laser transmitter/receiver system for Earth-satellite-Earth long-path absorption measurements of atmospheric trace species using the retroreflector in space. Opt. Eng. 36, 3235–3241 (1997).

    Article  ADS  Google Scholar 

  21. Ma, Y. G., Ong, C. K., Tyc, T. & Leonhardt, U. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nat. Mater. 8, 639–642 (2009).

    Article  ADS  Google Scholar 

  22. Vitaz, J. A., Buerkle, A. M. & Sarabandi, K. Tracking of metallic objects using a retro-reflective array at 26 GHz. IEEE Trans. Antennas Propag. 58, 3539–3544 (2010).

    Article  ADS  Google Scholar 

  23. Fairchild, R. C. & Fienup, J. R. Computer-originated aspheric holographic optical elements. Opt. Eng. 21, 133–140 (1982).

    Article  ADS  Google Scholar 

  24. Arbabi, A., Horie, Y. & Faraon, A. in CLEO: 2014, OSA Technical Digest Paper STu3M.5 (Optical Society of America, 2014).

  25. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotech. 10, 937–943 (2015).

    Article  ADS  Google Scholar 

  26. O'Shea, D. C., Suleski, T. J., Kathman, A. D. & Prather, D. W. Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004).

    Google Scholar 

  27. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).

    Article  ADS  Google Scholar 

  28. Snyder, J. J. Paraxial ray analysis of a cats-eye retroreflector. Appl. Opt. 14, 1825–1828 (1975).

    Article  ADS  Google Scholar 

  29. Eisenbach, O., Avayu, O., Ditcovski, R. & Ellenbogen, T. Metasurfaces based dual wavelength diffractive lenses. Opt. Express 23, 3928–3936 (2015).

    Article  ADS  Google Scholar 

  30. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    Article  ADS  Google Scholar 

  31. Liu, V. & Fan, S. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jet Propulsion Laboratory, DARPA and Northrop Grumman NG Next. Y.H. acknowledges support from Japan Student Services Organization (JASSO) fellowship. S.M.K. was supported as part of the DOE ‘Light–Material Interactions in Energy Conversion' Energy Frontier Research Center under grant no. DE-SC0001293. Device nanofabrication was performed at the Kavli Nanoscience Institute at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

A.A. and A.F. conceived the concept. A.A. designed and optimized the device. A.A. and E.A. fabricated the sample with help from Y.H. and S.M.K. A.A., E.A. and A.F. designed the experiments. AA. and E.A. performed the measurements and analysed the data. A.A. and A.F. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Andrei Faraon.

Ethics declarations

Competing interests

A.A. and A.F. have submitted a patent application based on the idea presented in this work.

Supplementary information

Supplementary information

Supplementary information (PDF 691 kb)

Supplementary information

Supplementary Movie 1 (MOV 602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbabi, A., Arbabi, E., Horie, Y. et al. Planar metasurface retroreflector. Nature Photon 11, 415–420 (2017). https://doi.org/10.1038/nphoton.2017.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing