Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers

Abstract

Lead halide perovskite semiconductors are in general known to have an inherently high X-ray absorption cross-section and a significantly higher carrier mobility than any other low-temperature solution-processed semiconductor. So far, the processing of several-hundred-micrometres-thick high-quality crystalline perovskite films over a large area has been unresolved for efficient X-ray detection. In this Article, we present a mechanical sintering process to fabricate polycrystalline methyl ammonium lead triiodide perovskite (MAPbI3) wafers with millimetre thickness and well-defined crystallinity. Benchmarking of the MAPbI3 wafers against state-of-the-art CdTe detectors reveals competitive conversion efficiencies of 2,527 µC Gyair−1 cm−2 under 70 kVp X-ray exposure. The high ambipolar mobility–lifetime product of 2 × 10−4 cm2 V−1 is suggested to be responsible for this exceptionally high sensitivity. Our findings inform a new generation of highly efficient and low-cost X-ray detectors based on perovskite wafers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of the sintered MAPbI3 wafer.
Figure 2: Mechanical and structural properties of the MAPbI3 wafer.
Figure 3: Charge transport investigations.
Figure 4: Direct X-ray to current conversion.

References

  1. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    Article  Google Scholar 

  2. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10, 391–402 (2015).

    Article  ADS  Google Scholar 

  3. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  4. Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014).

    Article  Google Scholar 

  5. Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  6. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

    Article  ADS  Google Scholar 

  7. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    Article  ADS  Google Scholar 

  8. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    Article  ADS  Google Scholar 

  9. Kasap, S. O., Kabir, M. Z . & Rowlands, J. A. Recent advances in X-ray photoconductors for direct conversion X-ray image detectors. Curr. Appl. Phys. 6, 288–292 (2006).

    Article  ADS  Google Scholar 

  10. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853–2865 (2000).

    Article  ADS  Google Scholar 

  11. Street, R. A. et al. Electronic transport in polycrystalline PbI2 films. J. Appl. Phys. 86, 2660–2667 (1999).

    Article  ADS  Google Scholar 

  12. Zentai, G., Schieber, M., Partain, L., Pavlyuchkova, R. & Proano, C. Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging. J. Cryst. Growth 275, e1327–e1331 (2005).

    Article  ADS  Google Scholar 

  13. Schieber, M. et al. Thick films of X-ray polycrystalline mercuric iodide detectors. J. Cryst. Growth 225, 118–123 (2001).

    Article  ADS  Google Scholar 

  14. Richter, M. & Siffert, P. High resolution gamma ray spectroscopy with CdTe detector systems. Nucl. Instrum. Methods Phys. Res. Sect. A 322, 529–537 (1992).

    Article  ADS  Google Scholar 

  15. Szeles, C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B 241, 783–790 (2004).

    Article  ADS  Google Scholar 

  16. Seller, P. et al. Pixellated Cd(Zn)Te high-energy X-ray instrument. J. Instrum. 6, C12009 (2011).

    Article  Google Scholar 

  17. Kasap, S. et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011).

    Article  Google Scholar 

  18. Skrotzki, W., Frommeyer, O. & Haasen, P. Plasticity of polycrystalline ionic solids. Phys. Status Solidi A 66, 219–228 (1981).

    Article  ADS  Google Scholar 

  19. Zhu, F. et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano 9, 2948–2959 (2015).

    Article  Google Scholar 

  20. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    Article  ADS  Google Scholar 

  21. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  22. Lucca, D. A., Herrmann, K. & Klopfstein, M. J. Nanoindentation: measuring methods and applications. CIRP Ann. Manuf. Technol. 59, 803–819 (2010).

    Article  Google Scholar 

  23. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (2011).

    Article  ADS  Google Scholar 

  24. Hay, J., Agee, P. & Herbert, E. Continuous stiffness measurment during instrumented indentation testing. Exp. Techniques 34, 86–94 (2010).

    Article  Google Scholar 

  25. Nix, W. D. & Gao, H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998).

    Article  ADS  Google Scholar 

  26. Sun, S., Fang, Y., Kieslich, G., White, T. J. & Cheetham, A. K. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015).

    Article  Google Scholar 

  27. Maier, V. et al. Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Rec. 26, 1421–1430 (2011).

    Article  ADS  Google Scholar 

  28. Wei, Q., Cheng, S., Ramesh, K. T. & Ma, E. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004).

    Article  Google Scholar 

  29. Kawamura, Y., Mashiyama, H. & Hasebe, K. Structural study on cubic–tetragonal transition of CH3NH3PbI3 . J. Phys. Soc. Jpn 71, 1694–1697 (2002).

    Article  ADS  Google Scholar 

  30. Kim, Y. H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    Article  Google Scholar 

  31. Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A. & Kanemitsu, Y. Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes. Appl. Phys. Express 7, 032302 (2014).

    Article  ADS  Google Scholar 

  32. Fedeli, P. et al. Influence of the synthetic procedures on the structural and optical properties of mixed-halide (Br, I) perovskite films. J. Phys. Chem. C 119, 21304–21313 (2015).

    Article  Google Scholar 

  33. Jaffe, A. et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2, 201–209 (2016).

    Article  Google Scholar 

  34. Wang, Y. et al. Pressure-induced phase transformation, reversible amorphization and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 137, 11144–11149 (2015).

    Article  Google Scholar 

  35. Bube, R. H. Electronic transport in polycrystalline films. Ann. Rev. Mater. Sci. 5, 201–224 (1975).

    Article  ADS  Google Scholar 

  36. Bässler, H. Charge transport in disordered organic photoconductors: a Monte Carlo simulation study. Phys. Status Solidi B 175, 15–56 (1993).

    Article  ADS  Google Scholar 

  37. Suzuki, K., Shorohov, M., Sawada, T. & Seto, S. Time-of-flight measurements on TiBr detectors. IEEE Trans. Nucl. Sci. 62, 433–436 (2015).

    Article  ADS  Google Scholar 

  38. Papadakis, A. C. Theory of transient space-charge perturbed currents in insulators. J. Phys. Chem. Solids 28, 641–647 (1967).

    Article  ADS  Google Scholar 

  39. Suzuki, K., Ichinohe, Y., Sawada, T., Kazuaki Imai, K. & Seto, S. Time-of-flight measurements on Schottky CdTe nuclear detectors. Phys. Status Solidi C 11, 1337–1340 (2014).

    Article  ADS  Google Scholar 

  40. Scharfe, M. E. Transient photoconductivity in vitreous As2Se3 . Phys. Rev. B 2, 5025–5034 (1970).

    Article  ADS  Google Scholar 

  41. Hirao, A., Tsukamoto, T. & Nishizawa, H. Analysis of nondispersive time-of-flight transients. Phys. Rev. B 59, 12991–12995 (1999).

    Article  ADS  Google Scholar 

  42. Pfister, G. & Scher, H. Time-dependent electrical transport in amorphous solids: As2Se3 . Phys. Rev. B 15, 2062–2083 (1977).

    Article  ADS  Google Scholar 

  43. Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    Article  Google Scholar 

  44. Filipenko, M., Gleixner, T., Anton, G., Durst, J. & Michel, T. Characterization of the energy resolution and the tracking capabilities of a hybrid pixel detector with CdTe-sensor layer for a possible use in a neutrinoless double beta decay experiment. Eur. Phys. J. C 73, 2374 (2013).

    Article  ADS  Google Scholar 

  45. Que, W. & Rowlands, J. A. X-ray photogeneration in amorphous selenium: geminate versus columnar recombination. Phy. Rev. B 51, 10500–10507 (1995).

    Article  ADS  Google Scholar 

  46. Klein, C. A. Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39, 2029–2038 (1968).

    Article  ADS  Google Scholar 

  47. Náfrádi, B., Náfrádi, G., Forró, L. & Horváth, E. Methylammonium lead iodide for efficient X-ray energy conversion. J. Phys. Chem. C 119, 25204–25208 (2015).

    Article  Google Scholar 

  48. Besleaga, C. et al. Iodine migration and degradation of perovskite solar cells enhanced by metallic electrodes. J. Phys. Chem. Lett. 7, 5168–5175 (2016).

    Article  Google Scholar 

  49. Schieber, M. et al. Theoretical and experimental sensitivity to X-rays of single and polycrystalline HgI2 compared with different single-crystal detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 458, 41–46 (2001).

    Article  ADS  Google Scholar 

  50. Beer, A. C., Willardson, R. K. & Weber, E. (eds) Semiconductors for Room Temperature Nuclear Detector Applications Vol. 43 (Academic, 1995).

    Google Scholar 

  51. Belas, E. et al. Reduction of inclusions in (CdZn)Te and CdTe:In single crystals by post-growth annealing. J. Electron. Mater. 37, 1212–1218 (2008).

    Article  ADS  Google Scholar 

  52. Liu, Y. et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015).

    Article  Google Scholar 

  53. Zhou, J., Chu, Y. & Huang, J. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl. Mater. Interfaces 8, 25660–25666 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The Cluster of Excellence Engineering of Advanced Materials (EAM) at the FAU University Erlangen and the Gradko 1896 ‘in situ Microscopy’ (DFG) is acknowledged for support. The authors thank C.O. Quiroz and M. Salvador for reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.S., R.F., G.J.M., T.M., O.S., M.R. and S.F.T. performed the electrical characterization under X-ray exposure at the Siemens Healthineers Technology Center. I.L. and S.S. synthesized the MAPbI3 single crystals and microcrystals. H.C. helped with processing of the X-ray detectors. S.S., A.O. and G.M. performed TOF experiments. B.M. and P.F. carried out the mechanical investigations. R.H. interpreted the XRD data. S.S. and S.G. performed the SEM investigation. G.J.M. wrote the manuscript. M.G., W.H., G.A. and C.J.B. initiated and supervised the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Gebhard J. Matt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, S., Fischer, R., Matt, G. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nature Photon 11, 436–440 (2017). https://doi.org/10.1038/nphoton.2017.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing