Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging exciton–polariton transport in MoSe2 waveguides

Abstract

The exciton–polariton (EP), a half-light and half-matter quasiparticle, is potentially an important element for future photonic and quantum technologies1,2,3,4. It provides both strong light–matter interactions and long-distance propagation that is necessary for applications associated with energy or information transfer. Recently, strongly coupled cavity EPs at room temperature have been demonstrated in van der Waals (vdW) materials due to their strongly bound excitons5,6,7,8,9. Here, we report a nano-optical imaging study of waveguide EPs in MoSe2, a prototypical vdW semiconductor. The measured propagation length of the EPs is sensitive to the excitation photon energy and reaches over 12 µm. The polariton wavelength can be conveniently altered from 600 nm down to 300 nm by controlling the waveguide thickness. Furthermore, we found an intriguing back-bending polariton dispersion close to the exciton resonance. The observed EPs in vdW semiconductors could be useful in future nanophotonic circuits operating in the near-infrared to visible spectral regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nano-optical imaging of a MoSe2 planar waveguide.
Figure 2: Edge-orientation dependence study.
Figure 3: Dispersion analysis.
Figure 4: Waveguide-thickness dependence study.

Similar content being viewed by others

References

  1. Weisbuch, C. et al. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  2. Gibbs, H. M., Khitrova, G. & Koch, S. W. Exciton–polariton light–semiconductor coupling effects. Nat. Photon. 5, 275–282 (2011).

    Article  ADS  Google Scholar 

  3. Tassone, F., Bassani, F. & Andreani, L. C. Quantum-well reflectivity and exciton–polariton dispersion. Phys. Rev. B 45, 6023–6030 (1992).

    Article  ADS  Google Scholar 

  4. Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  ADS  Google Scholar 

  5. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    Article  ADS  Google Scholar 

  6. Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).

    Article  ADS  Google Scholar 

  7. Lundt, N. et al. Room-temperature Tamm-plasmon exciton–polaritons with a WSe2 monolayer. Nat. Commun. 7, 13328 (2016).

    Article  ADS  Google Scholar 

  8. Flatten, L. C. et al. Room-temperature exciton polaritons with two-dimensional WS2 . Sci. Rep. 6, 33134 (2016).

    Article  ADS  Google Scholar 

  9. Wang, Q. et al. Direct observation of strong light–exciton coupling in thin WS2 flakes. Opt. Express 24, 7151–7157 (2016).

    Article  ADS  Google Scholar 

  10. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, 195 (2016).

    Article  Google Scholar 

  11. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  Google Scholar 

  12. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotech. 6, 630–634 (2011).

    Article  ADS  Google Scholar 

  13. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  14. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  15. Woessner, G. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  Google Scholar 

  16. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  Google Scholar 

  17. Li, P. et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  ADS  Google Scholar 

  18. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    Article  ADS  Google Scholar 

  19. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  20. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  21. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

    Article  ADS  Google Scholar 

  22. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronic and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  23. Fei, Z. et al. Nano-optical imaging of WSe2 waveguide modes revealing light–exciton interactions. Phys. Rev. B 94, 081402(R) (2016).

    Article  ADS  Google Scholar 

  24. Katsuyama, T. & Ogawa, K. Excitonic polaritons in quantum-confined systems and applications to optoelectronic devices. J. Appl. Phys. 75, 7607–7625 (1994).

    Article  ADS  Google Scholar 

  25. van Vugt, L. K. et al. Exciton polaritons confined in a ZnO nanowire cavity. Phys. Rev. Lett. 97, 147401 (2006).

    Article  ADS  Google Scholar 

  26. Takazawa, K. et al. Fraction of a millimeter propagation of exciton polaritons in photoexcited nanofibers of organic dye. Phys. Rev. Lett. 105, 067401 (2010).

    Article  ADS  Google Scholar 

  27. Liscidini, M. et al. Guided Bloch surface wave polaritons. Appl. Phys. Lett. 98, 121118 (2011).

    Article  ADS  Google Scholar 

  28. Ellenbogen, T., Steinvurzel, P. & Crozier, K. B. Strong coupling between excitons in J-aggregates and waveguide modes in thin polymer films. Appl. Phys. Lett. 98, 261103 (2011).

    Article  ADS  Google Scholar 

  29. Arakawa, E. T., Williams, M. W., Hamm, R. N. & Ritchie, R. H. Effect of damping on surface plasmon dispersion. Phys. Rev. Lett. 31, 1127–1129 (1973).

    Article  ADS  Google Scholar 

  30. Schuller, E., Falge, H. J. & Borstel, G. Dispersion curves of surface phonon–polaritons with backbending. Phys. Lett. A 54, 317–318 (1975).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.H., Y.L. and Z.F. acknowledge start-up support from Iowa State University and Ames Laboratory. The nano-optical imaging set-up was partially supported by the W. M. Keck foundation. The work at the University of Washington was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0008145 and SC0012509). The work at Oak Ridge National Laboratory (J.Y. and D.G.M.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Contributions

Z.F. conceived the ideas and designed the experiments. F.H. carried out the s-SNOM experiments and collected the data. Z.F., F.H. and Y.L. performed theoretical analyses and modelling of the data. X.X., M.E.S., J.Y. and D.G.M. synthesized the MoSe2 crystals and fabricated the waveguide devices. Z.F., X.X., F.H. and Y.L. wrote the paper.

Corresponding author

Correspondence to Z. Fei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Luan, Y., Scott, M. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nature Photon 11, 356–360 (2017). https://doi.org/10.1038/nphoton.2017.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.65

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing