Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber

Abstract

Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance from 1.0 to 86.3%. By combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of a switchable reflective polarizer.
Figure 2: Static optical properties of the CdO-based perfect absorber.
Figure 3: Ultrafast amplitude modulation via intraband resonant pumping of the CdO-based perfect absorber.
Figure 4: Ultrafast polarization switching.

References

  1. 1

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  2. 2

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    ADS  Article  Google Scholar 

  3. 3

    Fleischer, S., Zhou, Y., Field, R. W. & Nelson, K. A. Molecular orientation and alignment by intense single-cycle THz pulses. Phys. Rev. Lett. 107, 163603 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 47601 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Bull, J. D. et al. 40-GHz electro-optic polarization modulator for fiber optic communications systems. Proc. SPIE 5577, 133–143 (2004).

    ADS  Article  Google Scholar 

  6. 6

    Eklund, H., Roos, A. & Eng, S. T. Rotation of laser beam polarization in acousto-optic devices. Opt. Quantum Electron. 7, 73–79 (1975).

    Article  Google Scholar 

  7. 7

    Wraback, M. & Shen, H. A femtosecond, polarization-sensitive optically addressed modulator based on virtual exciton effects in an anisotropically strained multiple quantum well. Appl. Phys. Lett. 76, 1288–1290 (2000).

    ADS  Article  Google Scholar 

  8. 8

    Vicario, C. et al. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient. Nat. Photon. 7, 720–723 (2013).

    ADS  Article  Google Scholar 

  9. 9

    Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    ADS  Article  Google Scholar 

  10. 10

    MacDonald, K. F., Sámson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nat. Photon. 3, 55–58 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 6, 107–111 (2011).

    ADS  Article  Google Scholar 

  12. 12

    Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

    ADS  Article  Google Scholar 

  13. 13

    Makarov, S. et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma. Nano Lett. 15, 6187–6192 (2015).

    ADS  Article  Google Scholar 

  14. 14

    Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    ADS  Article  Google Scholar 

  15. 15

    Yang, Y. et al. Transient GaAs plasmonic metasurfaces at terahertz frequencies. ACS Photon. 4, 15–21 (2017).

    Article  Google Scholar 

  16. 16

    Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. Nano Lett. 14, 894–900 (2014).

    ADS  Article  Google Scholar 

  17. 17

    Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    ADS  Article  Google Scholar 

  18. 18

    Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    ADS  Article  Google Scholar 

  19. 19

    Kinsey, N. et al. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2, 616–622 (2015).

    ADS  Article  Google Scholar 

  20. 20

    Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photon. 2, 1584–1591 (2015).

    Article  Google Scholar 

  21. 21

    Tyborski, T. et al. Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers. Phys. Rev. Lett. 115, 147401 (2015).

    ADS  Article  Google Scholar 

  22. 22

    Luk, T. S. et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett. 106, 151103 (2015).

    ADS  Article  Google Scholar 

  23. 23

    Guo, P., Schaller, R. D., Ketterson, J. B. & Chang, R. P. H. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photon. 10, 267–273 (2016).

    ADS  Article  Google Scholar 

  24. 24

    Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    ADS  Article  Google Scholar 

  25. 25

    Caspani, L. et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

    ADS  Article  Google Scholar 

  26. 26

    Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407–413 (2017).

    ADS  Article  Google Scholar 

  27. 27

    Sachet, E. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414–420 (2015).

    ADS  Article  Google Scholar 

  28. 28

    Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    Article  Google Scholar 

  29. 29

    Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).

    Google Scholar 

  30. 30

    Luk, T. S. et al. Directional perfect absorption using deep subwavelength low-permittivity films. Phys. Rev. B 90, 85411 (2014).

    ADS  Article  Google Scholar 

  31. 31

    Vassant, S., Hugonin, J.-P., Marquier, F. & Greffet, J.-J. Berreman mode and epsilon near zero mode. Opt. Express 20, 23971–23977 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015).

    ADS  Article  Google Scholar 

  33. 33

    Jefferson, P. H. et al. Bandgap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92, 22101 (2008).

    Article  Google Scholar 

  34. 34

    Sim, S. et al. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons. Nat. Commun. 6, 8814 (2015).

    ADS  Article  Google Scholar 

  35. 35

    Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Phys. Rev. B 62, 15764–15777 (2000).

    ADS  Article  Google Scholar 

  36. 36

    Luo, C. W., Wang, Y. T., Chen, F. W., Shih, H. C. & Kobayashi, T. Eliminate coherence spike in reflection-type pump–probe measurements. Opt. Express 17, 11321–11327 (2009).

    ADS  Article  Google Scholar 

  37. 37

    Berry, H. G., Gabrielse, G. & Livingston, A. E. Measurement of the Stokes parameters of light. Appl. Opt. 16, 3200–3205 (1977).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Liu and P.Q. Liu of Sandia National Laboratories and D. de Ceglia of the National Research Council for discussions. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US DOE Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE National Nuclear Security Administration under contract DE-AC04-94AL85000. K.K., E.S. and J.-P.M. also acknowledge support of this work by National Science Foundation grant CHE-150794 and Army Research Office grant W911NF-16-1-0037.

Author information

Affiliations

Authors

Contributions

Y.Y. and I.B. conceived the idea; Y.Y. designed the structure and conducted all the optical measurements; K.K., E.S. and J.-P.M. grew and characterized the CdO film; S.C. and T.S.L. calculated the dispersion relations and provided insight on the perfect absorption; all the authors analysed the data. Y.Y. wrote the manuscript with input from all the authors. I.B., M.B.S. and J.-P.M. supervised the project.

Corresponding authors

Correspondence to Yuanmu Yang or Igal Brener.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5605 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Kelley, K., Sachet, E. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nature Photon 11, 390–395 (2017). https://doi.org/10.1038/nphoton.2017.64

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing