Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-efficiency multiphoton boson sampling


Boson sampling is considered as a strong candidate to demonstrate ‘quantum computational supremacy’ over classical computers. However, previous proof-of-principle experiments suffered from small photon number and low sampling rates owing to the inefficiencies of the single-photon sources and multiport optical interferometers. Here, we develop two central components for high-performance boson sampling: robust multiphoton interferometers with 99% transmission rate and actively demultiplexed single-photon sources based on a quantum dot–micropillar with simultaneously high efficiency, purity and indistinguishability. We implement and validate three-, four- and five-photon boson sampling, and achieve sampling rates of 4.96 kHz, 151 Hz and 4 Hz, respectively, which are over 24,000 times faster than previous experiments. Our architecture can be scaled up for a larger number of photons and with higher sampling rates to compete with classical computers, and might provide experimental evidence against the extended Church–Turing thesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up for multiphoton boson-sampling.
Figure 2: The single-photon source and interferometer for boson sampling.
Figure 3: Experimental results for the three-, four- and five-boson sampling.
Figure 4: Validating boson-sampling results.


  1. 1

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS  Article  Google Scholar 

  3. 3

    Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    ADS  Article  Google Scholar 

  4. 4

    Monz, T. et al. Realization of a scalable Shor algorithm. Science 351, 1068–1070 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. 43rd Annual ACM Symp. Theory of Computing 333–342 (ACM, 2011).

    Google Scholar 

  6. 6

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Rohde, P. R. & Ralph, T. C. Error tolerance of boson-sampling model for linear optical quantum computing. Phys. Rev. A 85, 022332 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Wu, J.-J. et al. Computing permanents for boson sampling on Tianhe-2 supercomputer. Preprint at (2016).

  9. 9

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    ADS  Article  Google Scholar 

  10. 10

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    ADS  Article  Google Scholar 

  11. 11

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Carolan, J . et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet  Article  Google Scholar 

  14. 14

    Bentivegna, M . et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).

    ADS  Article  Google Scholar 

  15. 15

    Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014).

    ADS  Article  Google Scholar 

  16. 16

    Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014).

    ADS  Article  Google Scholar 

  17. 17

    Loredo, J. C. et al. Boson sampling with single photon Fock states from a bright solid-state source. Preprint at (2016).

  18. 18

    Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    ADS  Article  Google Scholar 

  19. 19

    Pittman, T., Jacobs, B. & Franson, J. Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66, 042303 (2002).

    ADS  Article  Google Scholar 

  20. 20

    Kaneda, F. et al. Time-multiplexed heralded single-photon source. Optica 2, 1010–1013 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    ADS  Article  Google Scholar 

  22. 22

    Lounis, B. & Orrit, M. Single photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    ADS  Article  Google Scholar 

  23. 23

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    ADS  Article  Google Scholar 

  24. 24

    Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single photon device. Nature 419, 594–597 (2002).

    ADS  Article  Google Scholar 

  25. 25

    Tillmann, M. et al. Generalized multiphoton quantum interference. Phys. Rev. X 5, 041015 (2015).

    Google Scholar 

  26. 26

    Shchesnovich, V. S. Partial indistinguishability theory of multiphoton experiments in multiport devices. Phys. Rev. A 91, 013844 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27

    Tichy, M. C. Sampling of partially distinguishable bosons and the relation to multidimensional permanent. Phys. Rev. A 91, 022316 (2015).

    ADS  Article  Google Scholar 

  28. 28

    He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotech. 8, 213–217 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    ADS  Article  Google Scholar 

  30. 30

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS  Article  Google Scholar 

  31. 31

    Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    ADS  Article  Google Scholar 

  32. 32

    Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photon. 4, 632–635 (2010).

    ADS  Article  Google Scholar 

  33. 33

    Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. An optimal design for universal quantum multiport interferometers. Preprint at (2016).

  34. 34

    Aaronson, S. & Arkhipov, A. Boson sampling is far from uniform. Quant. Inf. Comp. 14, 1383–1432 (2014).

    Google Scholar 

  35. 35

    Bentivegna, M. et al. Bayesian approach to boson sampling validation. Int. J. Quant. Inf. 12, 1560028 (2014).

    MathSciNet  Article  Google Scholar 

  36. 36

    Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 2006).

    MATH  Google Scholar 

  37. 37

    Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

    ADS  Article  Google Scholar 

  38. 38

    Zadeh, I. E. et al. Single-photon detectors combining near unity efficiency, ultra-high detection-rates, and ultra-high time resolution. Preprint at (2016).

  39. 39

    Unsleber, S. et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt. Express 24, 8539–8546 (2016).

    ADS  Article  Google Scholar 

  40. 40

    Muller, A. et al. Resonant fluorescence from a coherent driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    ADS  Article  Google Scholar 

Download references


We thank S. Aaronson, B. Sanders and P. Rohde for helpful discussions. This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences, the National Fundamental Research Program and the State of Bavaria.

Author information




C.-Y.L. and J.-W.P. conceived and designed the experiment, C.S., M.K. and S.H. grew and fabricated the quantum dot samples. H.W., Y.H., Y.-H.L., Z.-E.S., B.L., H.-L.H., X.D., M.-C.C., C.L., J.Q., J.-P.L., Y.-M.H., C.S., M.K., C.-Z.P., S.H. and C.-Y.L. performed the experiment, S.H., C.-Y. L. and J.-W.P. analysed the experimental data. C.-Y.L. and J.-W.P. wrote the paper.

Corresponding authors

Correspondence to Chao-Yang Lu or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 997 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., He, Y., Li, YH. et al. High-efficiency multiphoton boson sampling. Nature Photon 11, 361–365 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing