Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

Abstract

Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Concept of LSC window based on ultra-earth-abundant Si quantum dots.
Figure 2: Large-area LSCs based on mass polymerized nanocomposite waveguides doped with Si quantum dots.
Figure 3: Large-area QD-LSCs.
Figure 4: Monte Carlo ray-tracing simulations.
Figure 5: Flexible QD-LSCs for curved BIPV elements.

References

  1. 1

    Fraunhofer Institute for Solar Energy Systems (ISE). Current and Future Cost of Photovoltaics. Long-Term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems. Report No. 059/01-S-2015/EN (2015).

  2. 2

    The European Parliament and the Council of the European Union. Directive 2010/31/EU of the European Parliament and the Council on the energy performance of buildings (recast). Official Journal of the European Union 23, http://data.europa.eu/eli/dir/2010/31/oj (2010)

  3. 3

    Weber, W. H. & Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 15, 2299–2300 (1976).

    ADS  Article  Google Scholar 

  4. 4

    Goetzberger, A. & Greube, W. Solar energy conversion with fluorescent collectors. Appl. Phys. 14, 123–139 (1977).

    ADS  Article  Google Scholar 

  5. 5

    Debije, M. G. Solar energy collectors with tunable transmission. Adv. Funct. Mater. 20, 1498–1502 (2010).

    Article  Google Scholar 

  6. 6

    Debije, M. G. & Verbunt, P. P. C. Solar concentrators: thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energ. Mater. 2, 12–35 (2012).

    Article  Google Scholar 

  7. 7

    Meinardi, F. et al. Large-area luminescent solar concentrators based on Stokes-shift-engineered nanocrystals in a mass-polymerized PMMA matrix. Nat. Photon. 8, 392–399 (2014).

    ADS  Article  Google Scholar 

  8. 8

    Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotech. 10, 878–885 (2015).

    ADS  Article  Google Scholar 

  9. 9

    van Sark, W. G. J. H. M. Luminescent solar concentrators—a low cost photovoltaics alternative. Renew. Energy 49, 207–210 (2013).

    Article  Google Scholar 

  10. 10

    Desmet, L., Ras, A. J. M., de Boer, D. K. G. & Debije, M. G. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency. Opt. Lett. 37, 3087–3089 (2012).

    ADS  Article  Google Scholar 

  11. 11

    Slooff, L. H. et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Status Solidi Rapid Res. Lett. 2, 257–259 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Slooff, L. H. et al. Long-term optical stability of fluorescent solar concentrator plates. Phys. Status Solidi A 211, 1150–1154 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Krumer, Z. et al. Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energ. Mater. Sol. Cell. 111, 57–65 (2013).

    Article  Google Scholar 

  14. 14

    Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  Google Scholar 

  15. 15

    Giebink, N. C., Wiederrecht, G. P. & Wasielewski, M. R. Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators. Nat. Photon. 5, 694–701 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Bomm, J. et al. Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites. Beilstein J. Nanotech. 1, 94–100 (2010).

    Article  Google Scholar 

  17. 17

    Bradshaw, L. R., Knowles, K. E., McDowall, S. & Gamelin, D. R. Nanocrystals for luminescent solar concentrators. Nano Lett. 15, 1315–1323 (2015).

    ADS  Article  Google Scholar 

  18. 18

    Bronstein, N. D. et al. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 8, 44–53 (2013).

    Article  Google Scholar 

  19. 19

    Coropceanu, I. & Bawendi, M. G. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14, 4097–4101 (2014).

    ADS  Article  Google Scholar 

  20. 20

    Zhou, Y. et al. Near infrared, highly efficient luminescent solar concentrators. Adv. Energ. Mater. 6, 1501913 (2016).

    Article  Google Scholar 

  21. 21

    Li, H., Wu, K., Lim, J., Song, H.-J. & Klimov, V. I. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat. Energy 1, 16157 (2016).

    ADS  Article  Google Scholar 

  22. 22

    Erickson, C. S. et al. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8, 3461–3467 (2014).

    Article  Google Scholar 

  23. 23

    Hu, X. et al. Ray-trace simulation of CuInS(Se)2 quantum dot based luminescent solar concentrators. Opt. Express 23, A858–A867 (2015).

    Article  Google Scholar 

  24. 24

    Knowles, K. E., Kilburn, T. B., Alzate, D. G., McDowall, S. & Gamelin, D. R. Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators. Chem. Commun. 51, 9129–9132 (2015).

    Article  Google Scholar 

  25. 25

    Holmes, J. D. et al. Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123, 3743–3748 (2001).

    Article  Google Scholar 

  26. 26

    Hybertsen, M. S. Absorption and emission of light in nanoscale silicon structures. Phys. Rev. Lett. 72, 1514–1517 (1994).

    ADS  Article  Google Scholar 

  27. 27

    Lee, B. G. et al. Quasi-direct optical transitions in silicon nanocrystals with intensity exceeding the bulk. Nano Lett. 16, 1583–1589 (2016).

    ADS  Article  Google Scholar 

  28. 28

    Hessel, C. M. et al. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 393–401 (2012).

    Article  Google Scholar 

  29. 29

    Mangolini, L. & Kortshagen, U. Plasma-assisted synthesis of silicon nanocrystal inks. Adv. Mater. 19, 2513–2519 (2007).

    Article  Google Scholar 

  30. 30

    Mangolini, L., Thimsen, E. & Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005).

    ADS  Article  Google Scholar 

  31. 31

    Meier, C., Gondorf, A., Lüttjohann, S., Lorke, A. & Wiggers, H. Silicon nanoparticles: absorption, emission, and the nature of the electronic bandgap. J. Appl. Phys. 101, 103112 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Sychugov, I., Pevere, F., Luo, J.-W., Zunger, A. & Linnros, J. Single-dot absorption spectroscopy and theory of silicon nanocrystals. Phys. Rev. B 93, 161413 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Jurbergs, D., Rogojina, E., Mangolini, L. & Kortshagen, U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).

    ADS  Article  Google Scholar 

  34. 34

    Anthony, R. & Kortshagen, U. Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles. Phys. Rev. B 80, 115407 (2009).

    ADS  Article  Google Scholar 

  35. 35

    Anthony, R. J., Rowe, D. J., Stein, M., Yang, J. & Kortshagen, U. Routes to achieving high quantum yield luminescence from gas-phase-produced silicon nanocrystals. Adv. Funct. Mater. 21, 4042–4046 (2011).

    Article  Google Scholar 

  36. 36

    Erogbogbo, F. et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413–423 (2011).

    Article  Google Scholar 

  37. 37

    Cheng, K.-Y., Anthony, R., Kortshagen, U. R. & Holmes, R. J. High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11, 1952–1956 (2011).

    ADS  Article  Google Scholar 

  38. 38

    Ng, W. L. et al. An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001).

    ADS  Article  Google Scholar 

  39. 39

    Hannah, D. C. et al. On the origin of photoluminescence in silicon nanocrystals: pressure-dependent structural and optical studies. Nano Lett. 12, 4200–4205 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Delerue, C., Allan, G. & Lannoo, M. Electron–phonon coupling and optical transitions for indirect-gap semiconductor nanocrystals. Phys. Rev. B 64, 193402 (2001).

    ADS  Article  Google Scholar 

  41. 41

    Tolcin, A. C. Mineral Commodity Summaries 2015 (U.S. Geological Survey, 2015).

  42. 42

    Moss, R. L., Tzimas, E., Kara, H., Willis, P. & Kooroshy, J. Critical Metals in Strategic Energy Technologies, Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies (Joint Research Centre, European Commission, 2011).

    Google Scholar 

  43. 43

    Wu, J. J. & Kortshagen, U. R. Photostability of thermally-hydrosilylated silicon quantum dots. RSC Adv. 5, 103822–103828 (2015).

    Article  Google Scholar 

  44. 44

    Wilson, W. L., Szajowski, P. F. & Brus, L. E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993).

    ADS  Article  Google Scholar 

  45. 45

    Goldschmidt, J. C. et al. Increasing the efficiency of fluorescent concentrator systems. Sol. Energ. Mater. Sol. Cell. 93, 176–182 (2009).

    Article  Google Scholar 

  46. 46

    Debije, M. G. et al. Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. Appl. Opt. 49, 745–751 (2010).

    ADS  Article  Google Scholar 

  47. 47

    Sangghaleh, F., Sychugov, I., Yang, Z., Veinot, J. G. C. & Linnros, J. Near-unity internal quantum efficiency of luminescent silicon nanocrystals with ligand passivation. ACS Nano 9, 7097–7104 (2015).

    Article  Google Scholar 

  48. 48

    Vishwanathan, B. et al. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators. Sol. Energy 112, 120–127 (2015).

    ADS  Article  Google Scholar 

  49. 49

    Tummeltshammer, C., Taylor, A., Kenyon, A. J. & Papakonstantinou, I. Flexible and fluorophore-doped luminescent solar concentrators based on polydimethylsiloxane. Opt. Lett. 41, 713–716 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

S.B. acknowledges the European Community's Seventh Framework Programme (FP7/2007-2013) for financial support (EDONHIST) under grant agreement no. 324603. U.K. and S.E. were supported by the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science, US Department of Energy. S.E. also acknowledges support through the NSF Graduate Research Fellowship Program under grant NSF GRFP 00039202. The authors thank M. Acciarri and the staff of the MIB-SOLAR Laboratory for technical assistance with quantitative studies of solar concentration.

Author information

Affiliations

Authors

Contributions

The experimental designs were the result of interactions and discussions between S.B. and U.K. S.E. synthesized the quantum dots. L.D. and F.C. fabricated the quantum dot–polymer nanocomposites with the assistance of S.B., R.S. and M.M. S.B. and F.M. planned the experiments. L.D., F.M., F.B. and S.B. performed the spectroscopic experiments and characterized the LSCs. F.M. performed the Monte Carlo simulations. S.B. wrote the paper, in consultation with all authors.

Corresponding authors

Correspondence to Francesco Meinardi or Uwe Kortshagen or Sergio Brovelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 819 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meinardi, F., Ehrenberg, S., Dhamo, L. et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nature Photon 11, 177–185 (2017). https://doi.org/10.1038/nphoton.2017.5

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing