Abstract
Superpositions of macroscopically distinct quantum states, introduced in Schrödinger's famous Gedankenexperiment, are an epitome of quantum ‘strangeness’ and a natural tool for determining the validity limits of quantum physics. The optical incarnation of Schrödinger's cat (SC)—the superposition of two opposite-amplitude coherent states—is also the backbone of continuous-variable quantum information processing. However, the existing preparation methods limit the amplitudes of the component coherent states, which curtails the state's usefulness for fundamental and practical applications. Here, we convert a pair of negative squeezed SC states of amplitude 1.15 to a single positive SC state of amplitude 1.85 with a success probability of ∼0.2. The protocol consists in bringing the initial states into interference on a beamsplitter and a subsequent heralding quadrature measurement in one of the output channels. Our technique can be realized iteratively, so arbitrarily high amplitudes can, in principle, be reached.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Algorithm of quantum engineering of large-amplitude high-fidelity Schrödinger cat states
Scientific Reports Open Access 09 March 2023
-
Asymptotic State Transformations of Continuous Variable Resources
Communications in Mathematical Physics Open Access 02 December 2022
-
Single-mode quantum non-Gaussian light from warm atoms
npj Quantum Information Open Access 26 October 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Schrödinger, E. Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807–812 (1935).
Haroche, S. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).
Wineland, D. J. Nobel lecture: superposition, entanglement, and raising Schrödinger's cat. Rev. Mod. Phys. 85, 1103–1114 (2013).
Markus, A. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271–277 (2014).
Leonhardt, U. Measuring Quantum States of Light (Cambridge Univ. Press, 1997).
Leggett, A. J. Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415–R451 (2002).
Lvovsky, A. I., Ghobadi, R., Chandra, A., Prasad, A. S. & Simon, C. Observation of micro–macro entanglement of light. Nat. Phys. 9, 541–544 (2013).
Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).
Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2007).
Joo, J., Munro, W. J. & Spiller, T. P. Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011).
Facon, A. et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature 535, 262–265 (2016).
Lee, S.-W. & Jeong, H. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. Lett. 87, 022326 (2012).
Sangouard, N. et al. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B 27, A137–A145 (2010).
Brask, J. B., Rigas, I., Polzik, E. S., Andersen, U. L. & Sørensen, A. S. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).
Huang, K. et al. Optical synthesis of large-amplitude squeezed coherent-state superpositions with minimal resource. Phys. Rev. Lett. 115, 023602 (2015).
Ulanov, A. E., Fedorov, I. A., Sychev, D., Grangier, P. & Lvovsky, A. I. Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong–Ou–Mandel effect. Nat. Commun. 7, 11925 (2016).
Bimbard, E., Jain, N., MacRae, A. & Lvovsky, A. I. Quantum-optical state engineering up to the two-photon level. Nat. Photon. 4, 243–247 (2010).
Yukawa, M. et al. Generating superposition of up-to three photons for continuous variable quantum information processing. Opt. Express 21, 5529–5535 (2013).
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).
Neergaard-Nielsen, J. S., Melholt Nielsen, B., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).
Wakui, K., Takahashi, H., Furusawa, A. & Sasaki, M. Photon subtracted squeezed states generated with periodically poled KTiOPO4 . Opt. Express 15, 3568–3574 (2007).
Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. & Grangier, P. Preparation of non-local superpositions of quasi-classical light states. Nat. Phys. 5, 189–192 (2009).
Gerrits, T. et al. Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum. Phys. Rev. A 82, 031802(R) (2010).
Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008).
Dong, R. et al. Generation of picosecond pulsed coherent state superpositions. J. Opt. Soc. Am. B 31, 1192–1201 (2014).
Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical Schrödinger cats from photon number states. Nature 448, 1784–1786 (2007).
Etesse, J., Bouillard, M., Kanseri, B. & Tualle-Brouri, R. Experimental generation of squeezed cat states with an operation allowing iterative growth. Phys. Rev. Lett. 114, 193602 (2015).
Laghaout, A. et al. Amplification of realistic Schrödinger-cat-state-like states by homodyne heralding. Phys. Rev. A 87, 043826 (2013).
Lund, A. P., Jeong, H., Ralph, T. C. & Kim, M. S. Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101 (2004).
Dakna, M., Anhut, T., Opatrny, T., Knöll, L. & Welsch, D.-G. Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997).
Lvovsky, A. I. & Raymer, M. G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009).
Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B 6, S556–S559 (2004).
Lee, C. W. & Jeong, H. Quantification of macroscopic quantum superpositions within phase space. Phys. Rev. Lett. 106, 220401 (2011).
Deléglis, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–515 (2008).
Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607–610 (2013).
Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).
Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).
Fedorov, I. A., Ulanov, A. E., Kurochkin, Y. & Lvovsky, A. I. Synthesis of the Einstein–Podolsky–Rosen entanglement in a sequence of two single-mode squeezers. Opt. Lett. 42, 132–134 (2017).
Berry, D. W. & Lvovsky, A. I. Linear-optical processing cannot increase photon efficiency. Phys. Rev. Lett. 105, 203601 (2010).
Kumar, R. et al. Versatile wideband balanced detector for quantum optical homodyne tomography. Opt. Commun. 285, 5259–5267 (2012).
Acknowledgements
We thank Y. Kurochkin and A. Turlapov for discussions. We acknowledge financial support from the Ministry of Education and Science of the Russian Federation (Agreement 14.582.21.0009, ID RFMEFI58215X0009). A.I.L. is supported by the Natural Sciences and Engineering Research Council of Canada and is a Canadian Institute for Advanced Research Fellow.
Author information
Authors and Affiliations
Contributions
All the authors participated in the conception and planning of the project, theoretical analysis and writing of the paper. The experiment was performed by D.V.S., A.E.U., A.A.P., I.A.F. and M.W.R. The data were analysed by D.V.S., A.E.U., I.A.F. and A.I.L.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Sychev, D., Ulanov, A., Pushkina, A. et al. Enlargement of optical Schrödinger's cat states. Nature Photon 11, 379–382 (2017). https://doi.org/10.1038/nphoton.2017.57
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2017.57
This article is cited by
-
Light emission from strongly driven many-body systems
Nature Physics (2023)
-
Algorithm of quantum engineering of large-amplitude high-fidelity Schrödinger cat states
Scientific Reports (2023)
-
A quantum-bit encoding converter
Nature Photonics (2023)
-
Asymptotic State Transformations of Continuous Variable Resources
Communications in Mathematical Physics (2023)
-
Single-mode quantum non-Gaussian light from warm atoms
npj Quantum Information (2022)