Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hybrid indium phosphide-on-silicon nanolaser diode

Abstract

The most-awaited convergence of microelectronics and photonics promises to bring about a revolution for on-chip data communications and processing1. Among all the optoelectronic devices to be developed, power-efficient nanolaser diodes able to be integrated densely with silicon photonics and electronics are essential to convert electrical data into the optical domain. Here, we report a demonstration of ultracompact laser diodes based on one-dimensional (1D) photonic crystal (PhC) nanocavities2,3,4 made in InP nanoribs heterogeneously integrated on a silicon-waveguide circuitry. The specific nanorib design enables an efficient electrical injection of carriers in the nanocavity without spoiling its optical properties. Room-temperature continuous-wave (CW) single-mode operation is obtained with a low current threshold of 100 µA. Laser emission at 1.56 µm in the silicon waveguides is obtained with wall-plug efficiencies greater than 10%. This result opens up exciting avenues for constructing optical networks at the submillimetre scale for on-chip interconnects and signal processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the hybrid nanolaser diode made of an InP-based 1D PhC nanocavity heterogeneously integrated with a SOI waveguide.
Figure 2: Simulated electro-optical characteristics of the nanolasers as a function of d, the p metallic contact distance.
Figure 3: Fabricated hybrid nanolaser.
Figure 4: Electro-optical characterization of the laser in CW at RT.

Similar content being viewed by others

References

  1. Miller, D. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  2. Foresi, J. S. et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 (1997).

    Article  ADS  Google Scholar 

  3. Halioua, Y. et al. III–V photonic crystal wire cavity laser on silicon wafer. J. Opt. Soc. Am. B 27, 2146–2150 (2010).

    Article  ADS  Google Scholar 

  4. Deotare, P. B., McCutcheon, M. W., Frank, I. W., Khan, M. & Lončar, M. High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009).

    Article  ADS  Google Scholar 

  5. Roelkens, G. et al. Adhesive bonding of InP∕InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene. J. Electrochem. Soc. 153, G1015 (2006).

    Article  Google Scholar 

  6. Fedeli, J. M. et al. Photonic–electronic integration with bonding. IEEE J. Sel. Top. Quantum Electron. 20, 350–358 (2014).

    Article  ADS  Google Scholar 

  7. Liang, D. et al. Low-temperature, strong SiO2–SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits. J. Electron. Mater. 37, 1552–1559 (2008).

    Article  ADS  Google Scholar 

  8. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  Google Scholar 

  9. Van Campenhout, J. et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).

    Article  ADS  Google Scholar 

  10. Mutsuo, S. et al. Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer. Opt. Express 22, 12139–12147 (2014).

    Article  ADS  Google Scholar 

  11. Park, H. et al. A hybrid AlGaInAs–silicon evanescent amplifier. IEEE Photon. Technol. Lett. 19, 230–232 (2007).

    Article  ADS  Google Scholar 

  12. Chen, H.-W., Kuo, Y. & Bowers, J. E. High speed hybrid silicon evanescent Mach–Zehnder modulator and switch. Opt. Express 16, 20571–20576 (2008).

    Article  ADS  Google Scholar 

  13. Liu, L. et al. Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated III–V microdisk cavity. Opt. Lett. 33, 2518–2520 (2008).

    Article  ADS  Google Scholar 

  14. Spuesens, T. et al. Compact integration of optical sources and detectors on SOI for optical interconnects fabricated in a 200 mm CMOS pilot line. J. Light. Technol. 30, 1764–1770 (2012).

    Article  ADS  Google Scholar 

  15. Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photon. 4, 182–187 (2010).

    Article  ADS  Google Scholar 

  16. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  17. Painter et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  18. Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006).

    Article  ADS  Google Scholar 

  19. Raineri, F. et al. Dynamics of band-edge photonic crystal lasers. Opt. Express 17, 3165–3172 (2009).

    Article  ADS  Google Scholar 

  20. Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

    Article  Google Scholar 

  21. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  22. Park, H.-G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    Article  ADS  Google Scholar 

  23. Jeong, K.-Y. et al. Electrically driven nanobeam laser. Nat. Commun. 4, 839–846 (2013).

    Google Scholar 

  24. Ellis, B. et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photon. 5, 297–300 (2011).

    Article  ADS  Google Scholar 

  25. Takeda, K. et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat. Photon. 7, 569–575 (2013).

    Article  ADS  Google Scholar 

  26. Bazin, A., Raj, R. & Raineri, F. Design of silica encapsulated high-Q photonic crystal nanobeam cavity. J. Light. Technol. 32, 952–958 (2014).

    Article  ADS  Google Scholar 

  27. Casey, H. C. & Carter, P. L. Variation of intervalence band absorption with hole concentration in p-type InP. Appl. Phys. Lett. 44, 82–83 (1984).

    Article  ADS  Google Scholar 

  28. Bazin, A. et al. Thermal management in hybrid InP/silicon photonic crystal nanobeam laser. Opt. Express 22, 10570–10578 (2014).

    Article  ADS  Google Scholar 

  29. Crosnier, G. et al. High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides. Opt. Lett. 41, 579–582 (2016).

    Article  ADS  Google Scholar 

  30. Crosnier, G. et al. Subduing surface recombination for continuous-wave operation of photonic crystal nanolasers integrated on silicon waveguides. Opt. Express 23, 27953–27959 (2015).

    Article  ADS  Google Scholar 

  31. Karle, T. J. et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal–oxide semiconductor fabricated silicon-on-insulator wire waveguides. J. Appl. Phys. 107, 063103 (2010).

    Article  ADS  Google Scholar 

  32. Taillaert, D. et al. Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn. J. Appl. Phys. 45, 6071–6077 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the FP7 European integrated project PhoxTrot (FP7-ICT 318240).

Author information

Authors and Affiliations

Authors

Contributions

G.C. and F.R. proposed the concept and designed the hybrid lasers. G.B. and I.S. grew the InP-based heterostructures. G.C., D.S., F.R. and S.B. fabricated the hybrid lasers. G.C., P.M. and D.S. performed the electro-optical characterization. D.S., R.R. and F.R. wrote the article. R.R. and F.R. led the project.

Corresponding author

Correspondence to Fabrice Raineri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crosnier, G., Sanchez, D., Bouchoule, S. et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nature Photon 11, 297–300 (2017). https://doi.org/10.1038/nphoton.2017.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing