Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relativistic electron beams driven by kHz single-cycle light pulses

Abstract

Laser–plasma acceleration1,2 is an emerging technique for accelerating electrons to high energies over very short distances. The accelerated electron bunches have femtosecond duration3,4, making them particularly relevant for applications such as ultrafast imaging5 or femtosecond X-ray generation6,7. Current laser–plasma accelerators deliver 100 MeV (refs 810) to GeV (refs 11, 12) electrons using Joule-class laser systems that are relatively large in scale and have low repetition rates, with a few shots per second at best. Nevertheless, extending laser–plasma acceleration to higher repetition rates would be extremely useful for applications requiring lower electron energy. Here, we use single-cycle laser pulses to drive high-quality MeV relativistic electron beams, thereby enabling kHz operation and dramatic downsizing of the laser system. Numerical simulations indicate that the electron bunches are only 1 fs long. We anticipate that the advent of these kHz femtosecond relativistic electron sources will pave the way to applications with wide impact, such as ultrafast electron diffraction in materials13,14 with an unprecedented sub-10 fs resolution15.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Measurements of the kHz electron beam.
Figure 2: Observation of dispersion effects.
Figure 3: Results of PIC simulations.

References

  1. 1

    Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    ADS  Article  Google Scholar 

  2. 2

    Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    ADS  Article  Google Scholar 

  3. 3

    Lundh, O. et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys. 7, 219–222 (2011).

    Article  Google Scholar 

  4. 4

    Buck, A. et al. Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543–548 (2011).

    Article  Google Scholar 

  5. 5

    Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. Science 343, 1108–1116 (2014).

    ADS  Article  Google Scholar 

  6. 6

    Corde, S. et al. Femtosecond X-rays from laser–plasma accelerators. Rev. Mod. Phys. 85, 0034–6861 (2013).

    Article  Google Scholar 

  7. 7

    Ta Phuoc, K. et al. All-optical Compton gamma-ray source. Nat. Photon. 6, 308–311 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    ADS  Article  Google Scholar 

  10. 10

    Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).

    ADS  Article  Google Scholar 

  11. 11

    Wang, X. et al. Quasi-monoenergetic laser–plasma acceleration of electrons to 2 GeV. Nat. Commun. 4, 1988 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Leemans, W. P. et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Zewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006).

    ADS  Article  Google Scholar 

  14. 14

    Sciaini, G. & Miller, R. J. D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74, 096101 (2011).

    ADS  Article  Google Scholar 

  15. 15

    Faure, J. et al. Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction. Phys. Rev. Accel. Beams 19, 021302 (2016).

    ADS  Article  Google Scholar 

  16. 16

    Malka, V. et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002).

    ADS  Article  Google Scholar 

  17. 17

    Böhle, F. et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 11, 095401 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Jullien, A. et al. Carrier-envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system. Opt. Lett. 39, 3774–3777 (2014).

    ADS  Article  Google Scholar 

  19. 19

    He, Z.-H. et al. High repetition-rate wakefield electron source generated by few-millijoule, 30 femtosecond laser pulses on a density downramp. New J. Phys. 15, 053016 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Beaurepaire, B. et al. Effect of the laser wave front in a laser–plasma accelerator. Phys. Rev. X. 5, 031012 (2015).

    Google Scholar 

  21. 21

    Pukhov, A. & Meyer-ter-Vehn, J. Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    ADS  Article  Google Scholar 

  22. 22

    Lu, W., Huang, C., Zhou, M., Mori, W. B. & Katsouleas, T. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).

    ADS  Article  Google Scholar 

  23. 23

    Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10, 061301 (2007).

    ADS  Article  Google Scholar 

  24. 24

    He, Z.-H. et al. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate. Appl. Phys. Lett. 102, 064104 (2013b).

    ADS  Article  Google Scholar 

  25. 25

    He, Z.-H. et al. Capturing structural dynamics in crystalline silicon using chirped electrons from a laser wakefield accelerator. Sci. Rep. 6, 36224 (2016).

    ADS  Article  Google Scholar 

  26. 26

    Goers, A. J. et al. Multi-MeV electron acceleration by subterawatt laser pulses. Phys. Rev. Lett. 115, 194802 (2015).

    ADS  Article  Google Scholar 

  27. 27

    Lifschitz, A. F. & Malka, V. Optical phase effects in electron wakefield acceleration using few-cycle laser pulses. New J. Phys. 14, 053045 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Beaurepaire, B., Lifschitz, A. & Faure, J. Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses. New J. Phys. 16, 023023 (2014).

    ADS  Article  Google Scholar 

  29. 29

    McGuffey, C. et al. Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Pak, A. et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Miranda, M. et al. Characterization of broadband few-cycle laser pulses with the d-scan technique. Opt. Express 20, 18732–18743 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Lifschitz, A. et al. Particle-in-cell modelling of laser–plasma interaction using Fourier decomposition. J. Comp. Phys. 228, 1803–1814 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of the support team at the Photo-Injector facility at Laboratoire de l'Accélérateur Linéaire for the absolute calibration of our phosphor screens. This work was funded by the European Research Council (ERC Starting Grant FEMTOELEC) under contract no. 306708. Financial support from the Région Ile-de-France (under contract SESAME-2012-ATTOLITE), the Agence Nationale pour la Recherche (under contracts ANR-11-EQPX-005-ATTOLAB and ANR-14-CE32-0011-03) and the Extreme Light Infrastructure-Hungary Non-Profit Ltd (under contract NLO3.6LOA) is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

A.V., B.B., D.Gué, D.Gus and J.F. built the laser–plasma experiment. D.Gué and D.Gus performed the experiment and analysed the data. F.B., M.B., M.L., A.J. and R.L.-M. developed the near-single-cycle laser system. A.L. performed the modelling of the experiment. J.F. and D.Gué wrote the paper with inputs from all co-authors. J.F. directed the project.

Corresponding author

Correspondence to J. Faure.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 762 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guénot, D., Gustas, D., Vernier, A. et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nature Photon 11, 293–296 (2017). https://doi.org/10.1038/nphoton.2017.46

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing