Abstract
The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Realizing multi-qubit controlled nonadiabatic holonomic gates with connecting systems
AAPPS Bulletin Open Access 09 May 2022
-
Quantum error correction of spin quantum memories in diamond under a zero magnetic field
Communications Physics Open Access 27 April 2022
-
Geometric entanglement of a photon and spin qubits in diamond
Communications Physics Open Access 15 December 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Sekiguchi, Y. et al. Geometric spin echo under zero field. Nat. Commun. 7, 11668 (2016).
Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. 44, 247–262 (1956).
Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984).
Anandan, J. Non-adiabatic non-Abelian geometric phase. Phys. Lett. A 133, 171–175 (1988).
Zanardi, P. & Rasetti, M. Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999).
Wang, X.-B. & Matsumoto, K. Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001).
Zhu, S.-L. & Wang, Z. D. Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002).
Jones, J. A., Vedral, V., Ekert, A. & Castagnoli, G. Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000).
Feng, G., Xu, G. & Long, G. Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013).
Abdumalikov, A. A. Jr et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013).
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).
Toyoda, K., Uchida, K., Noguchi, A., Haze, S. & Urabe, S. Realization of holonomic single-qubit operations. Phys. Rev. A 87, 052307 (2013).
Economou, S. E. & Reinecke, T. L. Theory of fast optical spin rotation in a quantum dot based on geometric phases and trapped states. Phys. Rev. Lett. 99, 217401 (2007).
Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nat. Phys. 5, 262–266 (2009).
Arroyo-Camejo, S., Lazariev, A., Hell, S. W. & Balasubramanian, G. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun. 5, 4870 (2014).
Zu, C. et al. Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72–75 (2014).
Yale, C. G. et al. Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photon. 10, 184–189 (2016).
Sjöqvist, E. A new phase in quantum computation. Physics 1, 35 (2008).
Sjöqvist, E. et al. Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012).
Kosaka, H. et al. Coherent transfer of light polarization to electron spins in a semiconductor. Phys. Rev. Lett. 100, 096602 (2008).
Kosaka, H. et al. Spin state tomography of optically injected electrons in a semiconductor. Nature 457, 702–705 (2009).
Kosaka, H. & Niikura, N. Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114, 053603 (2015).
Yang, S. et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat. Photon. 10, 507–511 (2016).
Maze, J. R. et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J. Phys. 13, 025025 (2011).
Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).
Wilczek, F. & Zee, A. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984).
Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).
Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).
Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Scharfenberger, B., Kosaka, H., Munro, W. J. & Nemoto, K. Absorption-based quantum communication with NV centres. New J. Phys. 17, 103012 (2015).
Howard, M. et al. Quantum process tomography and Linblad estimation of a solid-state qubit. New J. Phys. 8, 33–33 (2006).
Acknowledgements
The authors thank Y. Matsuzaki, B. Scharfenberger, K. Nemoto, W. Munro, N. Mizuochi, N. Yokoshi, F. Jelezko and J. Wrachtrup for discussions and experimental help. This work was supported by the National Institute of Information and Communications Technology (NICT) Quantum Repeater Project and by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (24244044, 16H06326, 16H01052) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) ‘Exploratory Challenge on Post-K computer’ project (Frontiers of Basic Science: Challenging the Limits).
Author information
Authors and Affiliations
Contributions
N.N. carried out the experiment. Y.S., R.K. and H.Ka. supported the experiment. Y.S. and H.Ko. analysed the data. Y.S. and H.Ko. wrote the manuscript. H.Ko. supervised the project. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 359 kb)
Rights and permissions
About this article
Cite this article
Sekiguchi, Y., Niikura, N., Kuroiwa, R. et al. Optical holonomic single quantum gates with a geometric spin under a zero field. Nature Photon 11, 309–314 (2017). https://doi.org/10.1038/nphoton.2017.40
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2017.40
This article is cited by
-
Optically addressable universal holonomic quantum gates on diamond spins
Nature Photonics (2022)
-
Quantum error correction of spin quantum memories in diamond under a zero magnetic field
Communications Physics (2022)
-
Remote interfacing between superconducting qubits and Rydberg-atom qubits via thermal coupled cavities
Science China Physics, Mechanics & Astronomy (2022)
-
Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations
Science China Physics, Mechanics & Astronomy (2022)
-
Realizing multi-qubit controlled nonadiabatic holonomic gates with connecting systems
AAPPS Bulletin (2022)