Metamaterial-inspired silicon nanophotonics

Abstract

The prospect of creating metamaterials with optical properties greatly exceeding the parameter space accessible with natural materials has been inspiring intense research efforts in nanophotonics for more than a decade. Following an era of plasmonic metamaterials, low-loss dielectric nanostructures have recently moved into the focus of metamaterial-related research. This development was mainly triggered by the experimental observation of electric and magnetic multipolar Mie-type resonances in high-refractive-index dielectric nanoparticles. Silicon in particular has emerged as a popular material choice, due to not only its high refractive index and very low absorption losses in the telecom spectral range, but also its paramount technological relevance. This Review overviews recent progress on metamaterial-inspired silicon nanostructures, including Mie-resonant and off-resonant regimes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: From single silicon nanoresonators to functional photonic nanostructures.
Figure 2: Mie-resonant silicon nanostructures.
Figure 3: Wavefront shaping with silicon metasurfaces.
Figure 4: Designed graded index silicon structures.
Figure 5: Bulk Mie-resonant silicon nanostructures.
Figure 6

References

  1. 1

    Dong, P., Chen, Y., Duan, G. & Neilson, D. T. Silicon photonic devices and integrated circuits. Nanophotonics 3, 215–228 (2014).

    Article  Google Scholar 

  2. 2

    Reed, G. T. Silicon Photonics: The State of the Art (Wiley-Interscience, 2008).

    Google Scholar 

  3. 3

    Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    Article  ADS  Google Scholar 

  4. 4

    Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  ADS  Google Scholar 

  5. 5

    Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Article  ADS  Google Scholar 

  6. 6

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  7. 7

    Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (December, 2009).

    Article  Google Scholar 

  8. 8

    Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotech. 11, 23–36 (2016).

    Article  ADS  Google Scholar 

  9. 9

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  10. 10

    Mie, G. Beiträge zur Optik trüber Medien, speziel kolloidaler Metallösungen. Ann. Phys. 25, 377–445 (1908).

    Google Scholar 

  11. 11

    Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk'yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).

    Article  ADS  Google Scholar 

  12. 12

    Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 10, 3749–3755 (2012).

    Article  ADS  Google Scholar 

  13. 13

    Sanz, J. M. et al. Influence of pollutants in the magneto-dielectric response of silicon nanoparticles. Opt. Lett. 39, 3142–3144 (2014).

    Article  ADS  Google Scholar 

  14. 14

    Decker, M. et al. High-efficiency dielectric Huygens' surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    Article  Google Scholar 

  15. 15

    Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 84, 235429 (2011).

    Article  ADS  Google Scholar 

  16. 16

    Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk'yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

    Article  ADS  Google Scholar 

  17. 17

    Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

    Article  Google Scholar 

  18. 18

    Ee, H., Kang, J., Brongersma, M. L. & Seo, M. Shape-dependent light scattering properties of subwavelength silicon nanoblocks. Nano Lett. 15, 1759–1765 (2015).

    Article  ADS  Google Scholar 

  19. 19

    Kerker, M., Wang, D. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

    Article  ADS  Google Scholar 

  20. 20

    Alaee, R., Filter, R., Lehr, D., Lederer, F. & Rockstuhl, C. A generalized Kerker condition for highly directive nanoantennas. Opt. Lett. 40, 2645–2648 (2015).

    Article  ADS  Google Scholar 

  21. 21

    Kruk, S. et al. Broadband highly-efficient dielectric metadevices for polarization control. APL Photon. 1, 30801 (2016).

    Article  Google Scholar 

  22. 22

    Campione, S., Basilio, L. I., Warne, L. K. & Sinclair, M. B. Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces. Opt. Express 23, 2293–2307 (2015).

    Article  ADS  Google Scholar 

  23. 23

    Zywietz, U., Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014).

    Article  ADS  Google Scholar 

  24. 24

    Shi, L. et al. Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. Nat. Commun. 4, 1904 (2013).

    Article  ADS  Google Scholar 

  25. 25

    Chong, K. E. et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

    Article  MathSciNet  Google Scholar 

  26. 26

    Zywietz, U. et al. Electromagnetic resonances of silicon nanoparticle dimers in the visible. ACS Photon. 2, 913–920 (2015).

    Article  Google Scholar 

  27. 27

    Bakker, R. M. et al. Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 15, 2137–2142 (2015).

    Article  ADS  Google Scholar 

  28. 28

    Caldarola, M. et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015).

    Article  ADS  Google Scholar 

  29. 29

    van de Groep, J., Coenen, T., Mann, S. A. & Polman, A. Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. Optica 3, 93–99 (2016).

    Article  ADS  Google Scholar 

  30. 30

    Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).

    Article  ADS  Google Scholar 

  31. 31

    Miroshnichenko, A. E. & Kivshar, Y. S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).

    Article  ADS  Google Scholar 

  32. 32

    Slobozhanyuk, A. P. et al. Enhanced photonic spin Hall effect with subwavelength topological edge states. Laser Photon. Rev. 10, 656–664 (2016).

    Article  ADS  Google Scholar 

  33. 33

    Moitra, P., Slovick, B. A., Yu, Z. G., Krishnamurthy, S. & Valentine, J. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, 171102 (2014).

    Article  ADS  Google Scholar 

  34. 34

    Moitra, P. et al. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photon. 2, 692–698 (2015).

    Article  Google Scholar 

  35. 35

    Liu, S. et al. Optical magnetic mirrors without metals. Optica 1, 250–256 (2014).

    Article  ADS  Google Scholar 

  36. 36

    Proust, J., Gallas, B., Ozerov, I. & Bonod, N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016).

    Article  Google Scholar 

  37. 37

    Yang, Y., Kravchenko, I. I., Briggs, D. P. & Valentine, J. All dielectric metasurfaces analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

    Article  ADS  Google Scholar 

  38. 38

    Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

    Article  ADS  Google Scholar 

  39. 39

    Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

    Article  ADS  Google Scholar 

  40. 40

    Khorasaninejad, M. K., Zhu, W. Z. & Crozier, K. B. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2, 376–382 (2015).

    Article  ADS  Google Scholar 

  41. 41

    Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).

    Article  Google Scholar 

  42. 42

    Kamali, S. M., Arbabi, E., Arbabi, A., Horie, Y. & Faraon, A. Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev. 10, 1002–1008 (2016).

    Article  ADS  Google Scholar 

  43. 43

    Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  ADS  Google Scholar 

  44. 44

    West, P. R. et al. All-dielectric subwavelength metasurface focusing lens. Opt. Express 22, 26212–26221 (2014).

    Article  ADS  Google Scholar 

  45. 45

    Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).

    Article  ADS  Google Scholar 

  46. 46

    Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).

    Article  ADS  Google Scholar 

  47. 47

    Yu, Y. F. et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photon. Rev. 9, 412–418 (2015).

    Article  ADS  Google Scholar 

  48. 48

    Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    Article  ADS  Google Scholar 

  49. 49

    Shalaev, M. I. et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015).

    Article  ADS  Google Scholar 

  50. 50

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotech. 10, 937–943 (2015).

    Article  ADS  Google Scholar 

  51. 51

    Kamali, S. M., Arbabi, A., Arbabi, E., Horie, Y. & Faraon, A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7, 11618 (2016).

    Article  ADS  Google Scholar 

  52. 52

    Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms. ACS Photon. 3, 514–519 (2016).

    Article  Google Scholar 

  53. 53

    Khorasaninejad, M., Ambrosio, A., Kanhaiya, P. & Capasso, F. Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016).

    Article  ADS  Google Scholar 

  54. 54

    Zhao, W. et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt. Lett. 41, 147–150 (2016).

    Article  ADS  Google Scholar 

  55. 55

    Backlund, M. P. et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photon. 10, 459–463 (2016).

    Article  ADS  Google Scholar 

  56. 56

    Park, S. et al. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial. Appl. Phys. Lett. 105, 091101 (2016).

    Article  ADS  Google Scholar 

  57. 57

    Kim, S. W., Yee, K. J., Abashin, M., Pang, L. & Fainman, Y. Composite dielectric metasurfaces for phase control of vector field. Opt. Lett. 40, 2453–2456 (2015).

    Article  ADS  Google Scholar 

  58. 58

    Niv, A., Biener, G., Kleiner, V. & Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express 14, 4208–4220 (2006).

    Article  ADS  Google Scholar 

  59. 59

    Lalanne, P. Waveguiding in blazed-binary diffractive elements. 16, 2517–2520 (1999).

  60. 60

    Chong, K. E. et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).

    Article  ADS  Google Scholar 

  61. 61

    Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

    Article  ADS  Google Scholar 

  62. 62

    Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

    Article  ADS  Google Scholar 

  63. 63

    Shcherbakov, M. R. et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photon. 2, 578–582 (2015).

    Article  Google Scholar 

  64. 64

    Shcherbakov, M. R. et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 15, 6985–6990 (2015).

    Article  ADS  Google Scholar 

  65. 65

    Makarov, S. et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma. Nano Lett. 15, 6187–6192 (2015).

    Article  ADS  Google Scholar 

  66. 66

    Campen, R. K. et al. Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials. Light Sci. Appl. 3, e155 (2014).

    Article  Google Scholar 

  67. 67

    Mezzapesa, F. P. et al. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers. Sci. Rep. 5, 16207 (2015).

    Article  ADS  Google Scholar 

  68. 68

    Karvounis, A., Ou, J., Wu, W., Macdonald, K. F. & Zheludev, N. I. Nano-optomechanical nonlinear dielectric metamaterials. Appl. Phys. Lett. 107, 191110 (2016).

    Article  ADS  Google Scholar 

  69. 69

    Kamali, S. M., Arbabi, E., Arbabi, A., Horie, Y. & Faraon, A. Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev. 10, 1002–1008 (2016).

    Article  ADS  Google Scholar 

  70. 70

    Andryieuski, A., Lavrinenko, A. V. & Zhukovsky, S. V. Anomalous effective medium approximation breakdown in deeply subwavelength all-dielectric photonic multilayers. Nanotechnology 26, 184001 (2015).

    Article  ADS  Google Scholar 

  71. 71

    Lehmann, V., Stengl, R. & Luigart, A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mater. Sci. Eng. B 69–70, 11–22 (2000).

    Article  Google Scholar 

  72. 72

    Schilling, J. et al. A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon. J. Opt. A Pure Appl. Opt. 3, S121–S132 (2001).

    Article  Google Scholar 

  73. 73

    Vasi, B. & Isi, G. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. Opt. Express 18, 20321–20333 (2010).

    Article  ADS  Google Scholar 

  74. 74

    Pap, A. E. et al. Optical properties of porous silicon. Part III: comparison of experimental and theoretical results. Opt. Mater. (Amst). 28, 506–513 (2006).

    Article  ADS  Google Scholar 

  75. 75

    Golovan, L. A., Kashkarov, P. K. & Timoshenko, V. Y. Form birefringence in porous semiconductors and dielectrics: a review. Crystallogr. Rep. 52, 672–685 (2007).

    Article  ADS  Google Scholar 

  76. 76

    Golovan, L. A. et al. Phase matching of second-harmonic generation in birefringent porous silicon. Appl. Phys. B 73, 31–34 (2001).

    Article  ADS  Google Scholar 

  77. 77

    Barth, D. S. et al. Macroscale transformation optics enabled by photoelectrochemical etching. Adv. Mater. 27, 6131–6136 (2015).

    Article  Google Scholar 

  78. 78

    Di Falco, A., Kehr, S. C. & Leonhardt, U. Luneburg lens in silicon photonics. Opt. Express 19, 5156–5162 (2011).

    Article  ADS  Google Scholar 

  79. 79

    Hunt, J. et al. Planar, flattened Luneburg lens at infrared wavelengths. Opt. Express 20, 1706–1713 (2012).

    Article  ADS  Google Scholar 

  80. 80

    Gabrielli, L. H., Liu, D., Johnson, S. G. & Lipson, M. On-chip transformation optics for multimode waveguide bends. Nat. Commun. 3, 1217 (2012).

    Article  ADS  Google Scholar 

  81. 81

    Zentgraf, B. T., Valentine, J., Tapia, N. & Li, J. An optical “Janus” device for integrated photonics. Adv. Mater. 22, 2561–2564 (2010).

    Article  Google Scholar 

  82. 82

    Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Silicon nanostructure cloak operating at optical frequencies. Nat. Photon. 3, 461–463 (2009).

    Article  ADS  Google Scholar 

  83. 83

    Gabrielli, L. H. & Lipson, M. Transformation optics on a silicon platform. J. Opt. 13, 24010 (2011).

    Article  Google Scholar 

  84. 84

    Tamma, V. A., Blair, J., Summers, C. J. & Park, W. Dispersion characteristics of silicon nanorod based carpet cloaks. Opt. Express 18, 25746–25756 (2010).

    Article  ADS  Google Scholar 

  85. 85

    Spadoti, D. H., Gabrielli, L. H., Poitras, C. B. & Lipson, M. Focusing light in a curved-space. Opt. Express 18, 3181–3186 (2010).

    Article  ADS  Google Scholar 

  86. 86

    Bock, P. J. et al. Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt. Express 18, 20251–20262 (2010).

    Article  ADS  Google Scholar 

  87. 87

    Cheben, P., Xu, D.-X., Janz, S. & Densmore, A. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt. Express 14, 4695–4702 (2006).

    Article  ADS  Google Scholar 

  88. 88

    Bock, P. J. et al. Subwavelength grating crossings for silicon wire waveguides. Opt. Express 18, 16146–16155 (2010).

    Article  ADS  Google Scholar 

  89. 89

    Halir, R. et al. Recent advances in silicon waveguide devices using sub-wavelength gratings. IEEE J. Sel. Top. Quant. Electron. 20, 8201313 (2014).

    Article  Google Scholar 

  90. 90

    Frandsen, L. H. et al. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt. Express 22, 8525–8532 (2014).

    Article  ADS  Google Scholar 

  91. 91

    Borel, P. I. et al. Imprinted silicon-based nanophotonics. Opt. Express 15, 1261–1266 (2007).

    Article  ADS  Google Scholar 

  92. 92

    Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374–377 (2015).

    Article  ADS  Google Scholar 

  93. 93

    Shen, B., Wang, P., Polson, R. & Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, 378–382 (2015).

    Article  ADS  Google Scholar 

  94. 94

    Wu, Q., Turpin, J. P. & Werner, D. H. Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci. Appl. 1, e38 (2012).

    Article  ADS  Google Scholar 

  95. 95

    Gans, R. & Happel, H. Zur Optik kolloidaler Metallösungen. Ann. Phys. 29, 277–300 (1909).

    Google Scholar 

  96. 96

    Schaefer, C. & Stallwitz, H. Ein zweidimensionales Dispersionsproblem. Ann. Phys. 50, 199–221 (1916).

    Google Scholar 

  97. 97

    Lewin, B. L. The electrical constants of a material loaded with spherical particles. J. Inst. Electr. Eng. 94, 65–68 (1947).

    Google Scholar 

  98. 98

    Sakurai, T. 'Artificial matter' for electromagentic wave. J. Phys. Soc. Jpn 5, 394–398 (1950).

    Article  ADS  Google Scholar 

  99. 99

    Rybin, M. V. et al. Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 6, 10102 (2015).

    Article  ADS  Google Scholar 

  100. 100

    Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    Article  ADS  Google Scholar 

  101. 101

    Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7, 791–795 (2013).

    Article  ADS  Google Scholar 

  102. 102

    Li, Y. et al. On-chip zero-index metamaterials. Nat. Photon. 9, 738–742 (2015).

    Article  ADS  Google Scholar 

  103. 103

    Valdivia-Valero, F. J. & Nieto-Vesperinas, M. Composites of resonant dielectric rods: a test of their behavior as metamaterial refractive elements. Photon. Nanostruct. Fundam. Appl. 10, 423–434 (2012).

    Article  ADS  Google Scholar 

  104. 104

    Rolly, B., Bebey, B., Bidault, S., Stout, B. & Bonod, N. Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances. Phys. Rev. B 85, 245432 (2012).

    Article  ADS  Google Scholar 

  105. 105

    Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

    Article  ADS  Google Scholar 

  106. 106

    Cheben, P. et al. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett. 35, 2526–2528 (2010).

    Article  ADS  Google Scholar 

  107. 107

    Schriever, C. et al. Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces. Adv. Opt. Mater. 3, 129–136 (2015).

    Article  Google Scholar 

  108. 108

    Slobozhanyuk, A. et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photon. 11, 130–136 (2017).

    Article  ADS  Google Scholar 

  109. 109

    Liu, S., Keeler, G, A., Reno, J, L., Sinclair, M, B. & Brener, I. III–V semiconductor nanoresonators — a new strategy for passive, active and nonlinear all-dielectric metamaterials. Adv. Opt. Mater. 4, 1457–1462 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

I.S. gratefully acknowledges financial support by the Thuringian State Government within its ProExcellence initiative (ACP2020) and by the German Research Foundation through the Emmy Noether Programme (STA 1426/2-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jörg Schilling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Staude, I., Schilling, J. Metamaterial-inspired silicon nanophotonics. Nature Photon 11, 274–284 (2017). https://doi.org/10.1038/nphoton.2017.39

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing