Review Article | Published:

Metamaterial-inspired silicon nanophotonics

Nature Photonics volume 11, pages 274284 (2017) | Download Citation

Abstract

The prospect of creating metamaterials with optical properties greatly exceeding the parameter space accessible with natural materials has been inspiring intense research efforts in nanophotonics for more than a decade. Following an era of plasmonic metamaterials, low-loss dielectric nanostructures have recently moved into the focus of metamaterial-related research. This development was mainly triggered by the experimental observation of electric and magnetic multipolar Mie-type resonances in high-refractive-index dielectric nanoparticles. Silicon in particular has emerged as a popular material choice, due to not only its high refractive index and very low absorption losses in the telecom spectral range, but also its paramount technological relevance. This Review overviews recent progress on metamaterial-inspired silicon nanostructures, including Mie-resonant and off-resonant regimes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & T. Silicon photonic devices and integrated circuits. Nanophotonics 3, 215–228 (2014).

  2. 2.

    Silicon Photonics: The State of the Art (Wiley-Interscience, 2008).

  3. 3.

    et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

  4. 4.

    et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

  5. 5.

    et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

  6. 6.

    & Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  7. 7.

    , , & Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (December, 2009).

  8. 8.

    & All-dielectric metamaterials. Nat. Nanotech. 11, 23–36 (2016).

  9. 9.

    , & Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

  10. 10.

    Beiträge zur Optik trüber Medien, speziel kolloidaler Metallösungen. Ann. Phys. 25, 377–445 (1908).

  11. 11.

    , , , & Magnetic light. Sci. Rep. 2, 492 (2012).

  12. 12.

    et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 10, 3749–3755 (2012).

  13. 13.

    et al. Influence of pollutants in the magneto-dielectric response of silicon nanoparticles. Opt. Lett. 39, 3142–3144 (2014).

  14. 14.

    et al. High-efficiency dielectric Huygens' surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

  15. 15.

    , & N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 84, 235429 (2011).

  16. 16.

    , , , & Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

  17. 17.

    et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

  18. 18.

    , , & Shape-dependent light scattering properties of subwavelength silicon nanoblocks. Nano Lett. 15, 1759–1765 (2015).

  19. 19.

    , & L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

  20. 20.

    , , , & A generalized Kerker condition for highly directive nanoantennas. Opt. Lett. 40, 2645–2648 (2015).

  21. 21.

    et al. Broadband highly-efficient dielectric metadevices for polarization control. APL Photon. 1, 30801 (2016).

  22. 22.

    , , & B. Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces. Opt. Express 23, 2293–2307 (2015).

  23. 23.

    , , & N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014).

  24. 24.

    et al. Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. Nat. Commun. 4, 1904 (2013).

  25. 25.

    et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

  26. 26.

    et al. Electromagnetic resonances of silicon nanoparticle dimers in the visible. ACS Photon. 2, 913–920 (2015).

  27. 27.

    et al. Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 15, 2137–2142 (2015).

  28. 28.

    et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015).

  29. 29.

    , , & Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. Optica 3, 93–99 (2016).

  30. 30.

    , , & S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).

  31. 31.

    & S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).

  32. 32.

    et al. Enhanced photonic spin Hall effect with subwavelength topological edge states. Laser Photon. Rev. 10, 656–664 (2016).

  33. 33.

    , , , & Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, 171102 (2014).

  34. 34.

    et al. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photon. 2, 692–698 (2015).

  35. 35.

    et al. Optical magnetic mirrors without metals. Optica 1, 250–256 (2014).

  36. 36.

    , , & All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016).

  37. 37.

    , , & All dielectric metasurfaces analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

  38. 38.

    et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

  39. 39.

    et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

  40. 40.

    , & B. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2, 376–382 (2015).

  41. 41.

    et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).

  42. 42.

    , , , & Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev. 10, 1002–1008 (2016).

  43. 43.

    , , & L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

  44. 44.

    et al. All-dielectric subwavelength metasurface focusing lens. Opt. Express 22, 26212–26221 (2014).

  45. 45.

    et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).

  46. 46.

    , , , & Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).

  47. 47.

    et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photon. Rev. 9, 412–418 (2015).

  48. 48.

    , , & Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

  49. 49.

    et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015).

  50. 50.

    , , & Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotech. 10, 937–943 (2015).

  51. 51.

    , , , & Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7, 11618 (2016).

  52. 52.

    et al. Efficient polarization-insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms. ACS Photon. 3, 514–519 (2016).

  53. 53.

    , , & Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016).

  54. 54.

    et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt. Lett. 41, 147–150 (2016).

  55. 55.

    et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photon. 10, 459–463 (2016).

  56. 56.

    et al. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial. Appl. Phys. Lett. 105, 091101 (2016).

  57. 57.

    , , , & Composite dielectric metasurfaces for phase control of vector field. Opt. Lett. 40, 2453–2456 (2015).

  58. 58.

    , , & Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express 14, 4208–4220 (2006).

  59. 59.

    Waveguiding in blazed-binary diffractive elements. 16, 2517–2520 (1999).

  60. 60.

    et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).

  61. 61.

    et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

  62. 62.

    et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

  63. 63.

    et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photon. 2, 578–582 (2015).

  64. 64.

    et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 15, 6985–6990 (2015).

  65. 65.

    et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma. Nano Lett. 15, 6187–6192 (2015).

  66. 66.

    et al. Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials. Light Sci. Appl. 3, e155 (2014).

  67. 67.

    et al. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers. Sci. Rep. 5, 16207 (2015).

  68. 68.

    , , , & I. Nano-optomechanical nonlinear dielectric metamaterials. Appl. Phys. Lett. 107, 191110 (2016).

  69. 69.

    , , , & Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev. 10, 1002–1008 (2016).

  70. 70.

    , & V. Anomalous effective medium approximation breakdown in deeply subwavelength all-dielectric photonic multilayers. Nanotechnology 26, 184001 (2015).

  71. 71.

    , & On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mater. Sci. Eng. B 69–70, 11–22 (2000).

  72. 72.

    et al. A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon. J. Opt. A Pure Appl. Opt. 3, S121–S132 (2001).

  73. 73.

    & Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. Opt. Express 18, 20321–20333 (2010).

  74. 74.

    et al. Optical properties of porous silicon. Part III: comparison of experimental and theoretical results. Opt. Mater. (Amst). 28, 506–513 (2006).

  75. 75.

    , & Y. Form birefringence in porous semiconductors and dielectrics: a review. Crystallogr. Rep. 52, 672–685 (2007).

  76. 76.

    et al. Phase matching of second-harmonic generation in birefringent porous silicon. Appl. Phys. B 73, 31–34 (2001).

  77. 77.

    et al. Macroscale transformation optics enabled by photoelectrochemical etching. Adv. Mater. 27, 6131–6136 (2015).

  78. 78.

    , & Luneburg lens in silicon photonics. Opt. Express 19, 5156–5162 (2011).

  79. 79.

    et al. Planar, flattened Luneburg lens at infrared wavelengths. Opt. Express 20, 1706–1713 (2012).

  80. 80.

    , , & On-chip transformation optics for multimode waveguide bends. Nat. Commun. 3, 1217 (2012).

  81. 81.

    , , & An optical “Janus” device for integrated photonics. Adv. Mater. 22, 2561–2564 (2010).

  82. 82.

    , , & Silicon nanostructure cloak operating at optical frequencies. Nat. Photon. 3, 461–463 (2009).

  83. 83.

    & Transformation optics on a silicon platform. J. Opt. 13, 24010 (2011).

  84. 84.

    , , & Dispersion characteristics of silicon nanorod based carpet cloaks. Opt. Express 18, 25746–25756 (2010).

  85. 85.

    , , & Focusing light in a curved-space. Opt. Express 18, 3181–3186 (2010).

  86. 86.

    et al. Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt. Express 18, 20251–20262 (2010).

  87. 87.

    , , & Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt. Express 14, 4695–4702 (2006).

  88. 88.

    et al. Subwavelength grating crossings for silicon wire waveguides. Opt. Express 18, 16146–16155 (2010).

  89. 89.

    et al. Recent advances in silicon waveguide devices using sub-wavelength gratings. IEEE J. Sel. Top. Quant. Electron. 20, 8201313 (2014).

  90. 90.

    et al. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt. Express 22, 8525–8532 (2014).

  91. 91.

    et al. Imprinted silicon-based nanophotonics. Opt. Express 15, 1261–1266 (2007).

  92. 92.

    et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374–377 (2015).

  93. 93.

    , , & An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, 378–382 (2015).

  94. 94.

    , & H. Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci. Appl. 1, e38 (2012).

  95. 95.

    & Zur Optik kolloidaler Metallösungen. Ann. Phys. 29, 277–300 (1909).

  96. 96.

    & Ein zweidimensionales Dispersionsproblem. Ann. Phys. 50, 199–221 (1916).

  97. 97.

    L. The electrical constants of a material loaded with spherical particles. J. Inst. Electr. Eng. 94, 65–68 (1947).

  98. 98.

    'Artificial matter' for electromagentic wave. J. Phys. Soc. Jpn 5, 394–398 (1950).

  99. 99.

    et al. Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 6, 10102 (2015).

  100. 100.

    , , , & T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

  101. 101.

    et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7, 791–795 (2013).

  102. 102.

    et al. On-chip zero-index metamaterials. Nat. Photon. 9, 738–742 (2015).

  103. 103.

    & Composites of resonant dielectric rods: a test of their behavior as metamaterial refractive elements. Photon. Nanostruct. Fundam. Appl. 10, 423–434 (2012).

  104. 104.

    , , , & Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances. Phys. Rev. B 85, 245432 (2012).

  105. 105.

    et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

  106. 106.

    et al. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett. 35, 2526–2528 (2010).

  107. 107.

    et al. Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces. Adv. Opt. Mater. 3, 129–136 (2015).

  108. 108.

    et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photon. 11, 130–136 (2017).

  109. 109.

    , , , & III–V semiconductor nanoresonators — a new strategy for passive, active and nonlinear all-dielectric metamaterials. Adv. Opt. Mater. 4, 1457–1462 (2016).

Download references

Acknowledgements

I.S. gratefully acknowledges financial support by the Thuringian State Government within its ProExcellence initiative (ACP2020) and by the German Research Foundation through the Emmy Noether Programme (STA 1426/2-1).

Author information

Affiliations

  1. Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany

    • Isabelle Staude
  2. Centre for Innovation Competence SiLi-nano, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany

    • Jörg Schilling

Authors

  1. Search for Isabelle Staude in:

  2. Search for Jörg Schilling in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jörg Schilling.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2017.39

Further reading