Abstract

High-speed, high-efficiency photodetectors play an important role in optical communication links that are increasingly being used in data centres to handle higher volumes of data traffic and higher bandwidths, as big data and cloud computing continue to grow exponentially. Monolithic integration of optical components with signal-processing electronics on a single silicon chip is of paramount importance in the drive to reduce cost and improve performance. We report the first demonstration of micro- and nanoscale holes enabling light trapping in a silicon photodiode, which exhibits an ultrafast impulse response (full-width at half-maximum) of 30 ps and a high efficiency of more than 50%, for use in data-centre optical communications. The photodiode uses micro- and nanostructured holes to enhance, by an order of magnitude, the absorption efficiency of a thin intrinsic layer of less than 2 µm thickness and is designed for a data rate of 20 gigabits per second or higher at a wavelength of 850 nm. Further optimization can improve the efficiency to more than 70%.

  • Subscribe to Nature Photonics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

  2. 2.

    et al. Monolithic silicon photonics at 25 Gb/s. Proceedings of 2016 Optical Fiber Communications Conference and Exhibition (OFC), paper Th4H.1 (OSA, 2016).

  3. 3.

    & A roadmap for nanophotonics. Nat. Photon. 1, 303–305 (2007).

  4. 4.

    et al. VCSEL-based interconnects for current and future data centers. J. Lightw. Technol. 33, 727–732 (2015).

  5. 5.

    Handbook of Optical Constants of Solids (Academic, 1985).

  6. 6.

    et al. Fully embedded board-level guided-wave optoelectronic interconnects. Proc. IEEE 88, 780–793 (2000).

  7. 7.

    , , , & Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44, L364 (2005).

  8. 8.

    , & A high-speed and high-responsivity photodiode in standard CMOS technology. IEEE Photon. Technol. Lett. 19, 197–199 (2007).

  9. 9.

    , & Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010).

  10. 10.

    et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photon. 3, 59–63 (2009).

  11. 11.

    , , , & Integrated silicon optical receiver with avalanche photodiode. IEEE Proc. Optoelectron. 150, 235–237 (2003).

  12. 12.

    , & Avalanche double photodiode in 40-nm standard CMOS technology. IEEE J. Quantum Electron. 49, 350–356 (2013).

  13. 13.

    et al. in Experimental Aspects of Quantum Computing 215–231 (Springer, 2005).

  14. 14.

    , & High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates. IEEE Photon. Technol. Lett. 14, 519–521 (2002).

  15. 15.

    et al. Fabrication of high-speed resonant cavity enhanced Schottky photodiodes. IEEE Photon. Technol. Lett. 9, 672–674 (1997).

  16. 16.

    et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

  17. 17.

    , & Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

  18. 18.

    et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotech. 10, 227–231 (2015).

  19. 19.

    et al. 300-Gb/s 24-channel bidirectional Si carrier transceiver optochip for board-level interconnects. Proceedings of 58th Electronic Components and Technology Conference 238–243 (IEEE, 2008).

  20. 20.

    . et al. Reliability and non-hermetic properties of Ge/Si optoelectronic devices. Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC), paper MB3.B (OSA, 2015).

  21. 21.

    , & High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt. Express 16, 11513–11518 (2008).

  22. 22.

    et al. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl. Phys. Lett. 94, 013102 (2009).

  23. 23.

    , & The future of silicon photonics: not so fast? Insights from 100G ethernet LAN transceivers. J. Lightw. Technol. 29, 2319–2326 (2011).

  24. 24.

    et al. Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture. ACS Nano 10, 6116–6124 (2016).

  25. 25.

    , , , & Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 2792–2796 (2012).

  26. 26.

    et al. Light trapping in photonic crystals. Energy Environ. Sci. 7, 2725–2738 (2014).

  27. 27.

    & Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

  28. 28.

    & Intensity enhancement in textured optical sheets for solar-cells. IEEE Trans. Electron Dev. 29, 300–305 (1982).

  29. 29.

    et al. Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express 17, 14312–14321 (2009).

  30. 30.

    Slow light in photonic crystal waveguides. J. Phys. D 40, 2666–2670 (2007).

  31. 31.

    et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010).

  32. 32.

    Why trap light? Nat. Mater. 11, 997–999 (2012).

  33. 33.

    & Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10, 1012–1015 (2010).

  34. 34.

    et al. Mode-based analysis of silicon nanohole arrays for photovoltaic applications. Opt. Express 22, A1343–A1354 (2014).

  35. 35.

    & Silicon photonics. J. Lightw. Technol. 24, 4600–4615 (2006).

  36. 36.

    Future prospects of silicon photonics in next generation communication and computing systems. Electron. Lett. 45, 584–588 (2009).

  37. 37.

    et al. Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures. Opt. Express 23, A1040–A1050 (2015).

  38. 38.

    , , & Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 10, 2117–2120 (2010).

  39. 39.

    et al. Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals. Appl. Phys. Lett. 101, 161103 (2012).

  40. 40.

    Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008).

  41. 41.

    et al. Illumination angle insensitive single indium phosphide tapered nanopillar solar cell. Nano Lett. 15, 4961–4967 (2015).

  42. 42.

    et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon. 1, 176–179 (2007).

  43. 43.

    et al. A perspective on nanowire photodetectors: current status, future challenges, and opportunities. IEEE J. Sel. Top. Quantum Electron. 17, 1002–1032 (2011).

  44. 44.

    , & Nonlinearities in p-i-n microwave photodetectors. J. Lightw. Technol. 14, 84–96 (1996).

  45. 45.

    et al. High power and highly linear monolithically integrated distributed balanced photodetectors. J. Lightw. Technol. 20, 285–295 (2002).

  46. 46.

    et al. A 64 Gb/s PAM-4 linear optical receiver. Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC), paper M3C.5 (OSA, 2015).

  47. 47.

    , & Characterizing high-speed oscilloscopes. IEEE Spectrum 27, 38–39 (1990).

Download references

Acknowledgements

The authors thank S.P. Wang and S.Y. Wang Partnership for financial support, and also acknowledge partial support from the Army Research Office (ARO- W911NF-14-4-0341) and the National Science Foundation (NSF CMMI-1235592).

Author information

Author notes

    • Yang Gao
    •  & Hilal Cansizoglu

    These authors contributed equally to this work

Affiliations

  1. Electrical and Computer Engineering, University of California, Davis, Davis, California 95618, USA

    • Yang Gao
    • , Hilal Cansizoglu
    • , Kazim G. Polat
    • , Soroush Ghandiparsi
    • , Ahmet Kaya
    • , Hasina H. Mamtaz
    • , Ahmed S. Mayet
    • , Yinan Wang
    • , Xinzhi Zhang
    • , Aly F. Elrefaie
    •  & M. Saif Islam
  2. Electrical Engineering, Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA

    • Toshishige Yamada
  3. W&WSens Devices, Inc., 4546 El Camino, Suite 215, Los Altos, California 94022, USA

    • Toshishige Yamada
    • , Ekaterina Ponizovskaya Devine
    • , Aly F. Elrefaie
    •  & Shih-Yuan Wang

Authors

  1. Search for Yang Gao in:

  2. Search for Hilal Cansizoglu in:

  3. Search for Kazim G. Polat in:

  4. Search for Soroush Ghandiparsi in:

  5. Search for Ahmet Kaya in:

  6. Search for Hasina H. Mamtaz in:

  7. Search for Ahmed S. Mayet in:

  8. Search for Yinan Wang in:

  9. Search for Xinzhi Zhang in:

  10. Search for Toshishige Yamada in:

  11. Search for Ekaterina Ponizovskaya Devine in:

  12. Search for Aly F. Elrefaie in:

  13. Search for Shih-Yuan Wang in:

  14. Search for M. Saif Islam in:

Contributions

E.P.D., T.Y., A.F.E. and S.G. simulated the photodiode structures. M.S.I., H.H.M., Y.G., H.C. and S.-Y.W. designed the photodiodes. Y.G., H.C., K.G.P. and H.H.M. fabricated the devices. H.C., S.G., A.K., A.S.M., Y.W. and X.Z. carried out the d.c. and high-speed characterization of the photodiodes. Y.G., H.C., S.G., A.F.E., T.Y. and A.K. discussed the processing and characterization results and analysed the data. Y.G., H.C., S.-Y.W. and M.S.I. drafted the manuscript. S.-Y.W., T.Y., E.P.D., A.F.E. and M.S.I. revised the manuscript. S.-Y.W. and M.S.I. co-supervised the research.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. Saif Islam.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary information

    Supplementary Movie 1

  2. 2.

    Supplementary information

    Supplementary Movie 2

  3. 3.

    Supplementary information

    Supplementary Movie 3

  4. 4.

    Supplementary information

    Supplementary Movie 4

  5. 5.

    Supplementary information

    Supplementary Movie 5

  6. 6.

    Supplementary information

    Supplementary Movie 6

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2017.37

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.