Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes

Abstract

High-speed, high-efficiency photodetectors play an important role in optical communication links that are increasingly being used in data centres to handle higher volumes of data traffic and higher bandwidths, as big data and cloud computing continue to grow exponentially. Monolithic integration of optical components with signal-processing electronics on a single silicon chip is of paramount importance in the drive to reduce cost and improve performance. We report the first demonstration of micro- and nanoscale holes enabling light trapping in a silicon photodiode, which exhibits an ultrafast impulse response (full-width at half-maximum) of 30 ps and a high efficiency of more than 50%, for use in data-centre optical communications. The photodiode uses micro- and nanostructured holes to enhance, by an order of magnitude, the absorption efficiency of a thin intrinsic layer of less than 2 µm thickness and is designed for a data rate of 20 gigabits per second or higher at a wavelength of 850 nm. Further optimization can improve the efficiency to more than 70%.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Silicon photodiode with integrated micro- and nanoscale holes.
Figure 2: Slow light in the micro- and nanoscale holes when illuminated by a normal incident beam of light.
Figure 3: Slow slight contributing to high efficiency.
Figure 4: Enhanced quantum efficiency enabled by integrated holes.
Figure 5: d.c. and ultrafast characteristics of the photodiodes.

References

  1. 1

    Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    ADS  Article  Google Scholar 

  2. 2

    Orcutt, J. S. et al. Monolithic silicon photonics at 25 Gb/s. Proceedings of 2016 Optical Fiber Communications Conference and Exhibition (OFC), paper Th4H.1 (OSA, 2016).

  3. 3

    Kirchain, R. & Kimerling, L. A roadmap for nanophotonics. Nat. Photon. 1, 303–305 (2007).

    ADS  Article  Google Scholar 

  4. 4

    Tatum, J. A. et al. VCSEL-based interconnects for current and future data centers. J. Lightw. Technol. 33, 727–732 (2015).

    ADS  Article  Google Scholar 

  5. 5

    Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1985).

    Google Scholar 

  6. 6

    Chen, R. T. et al. Fully embedded board-level guided-wave optoelectronic interconnects. Proc. IEEE 88, 780–793 (2000).

    Article  Google Scholar 

  7. 7

    Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44, L364 (2005).

    ADS  Article  Google Scholar 

  8. 8

    Huang, W., Liu, Y. & Hsin, Y. A high-speed and high-responsivity photodiode in standard CMOS technology. IEEE Photon. Technol. Lett. 19, 197–199 (2007).

    ADS  Article  Google Scholar 

  9. 9

    Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photon. 3, 59–63 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Csutak, S., Schaub, J., Wang, S., Mogab, J. & Campbell, J. Integrated silicon optical receiver with avalanche photodiode. IEEE Proc. Optoelectron. 150, 235–237 (2003).

    Article  Google Scholar 

  12. 12

    Atef, M., Polzer, A. & Zimmermann, H. Avalanche double photodiode in 40-nm standard CMOS technology. IEEE J. Quantum Electron. 49, 350–356 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Kumar, P. et al. in Experimental Aspects of Quantum Computing 215–231 (Springer, 2005).

    Book  Google Scholar 

  14. 14

    Emsley, M. K., Dosunmu, O. & Unlu, M. S. High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates. IEEE Photon. Technol. Lett. 14, 519–521 (2002).

    ADS  Article  Google Scholar 

  15. 15

    Ozbay, E. et al. Fabrication of high-speed resonant cavity enhanced Schottky photodiodes. IEEE Photon. Technol. Lett. 9, 672–674 (1997).

    ADS  Article  Google Scholar 

  16. 16

    Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2 . Science 350, 1065–1068 (2015).

    ADS  Article  Google Scholar 

  17. 17

    Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

    Article  Google Scholar 

  18. 18

    Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotech. 10, 227–231 (2015).

    ADS  Article  Google Scholar 

  19. 19

    Doany, F. E. et al. 300-Gb/s 24-channel bidirectional Si carrier transceiver optochip for board-level interconnects. Proceedings of 58th Electronic Components and Technology Conference 238–243 (IEEE, 2008).

  20. 20

    Li, S . et al. Reliability and non-hermetic properties of Ge/Si optoelectronic devices. Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC), paper MB3.B (OSA, 2015).

  21. 21

    Chen, L., Dong, P. & Lipson, M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt. Express 16, 11513–11518 (2008).

    ADS  Article  Google Scholar 

  22. 22

    Yuan, H. C. et al. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl. Phys. Lett. 94, 013102 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Fuchs, E. R. H., Kirchain, R. E. & Liu, S. The future of silicon photonics: not so fast? Insights from 100G ethernet LAN transceivers. J. Lightw. Technol. 29, 2319–2326 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Kuang, P. et al. Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture. ACS Nano 10, 6116–6124 (2016).

    Article  Google Scholar 

  25. 25

    Mavrokefalos, A., Han, S. E., Yerci, S., Branham, M. S. & Chen, G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 2792–2796 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Wang, K. X. Z. et al. Light trapping in photonic crystals. Energy Environ. Sci. 7, 2725–2738 (2014).

    Article  Google Scholar 

  27. 27

    Garnett, E. & Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar-cells. IEEE Trans. Electron Dev. 29, 300–305 (1982).

    ADS  Article  Google Scholar 

  29. 29

    Park, Y. et al. Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express 17, 14312–14321 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Krauss, T. F. Slow light in photonic crystal waveguides. J. Phys. D 40, 2666–2670 (2007).

    ADS  Article  Google Scholar 

  31. 31

    Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010).

    ADS  Article  Google Scholar 

  32. 32

    John, S. Why trap light? Nat. Mater. 11, 997–999 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Han, S. E. & Chen, G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10, 1012–1015 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Donnelly, J. L. et al. Mode-based analysis of silicon nanohole arrays for photovoltaic applications. Opt. Express 22, A1343–A1354 (2014).

    Article  Google Scholar 

  35. 35

    Jalali, B. & Fathpour, S. Silicon photonics. J. Lightw. Technol. 24, 4600–4615 (2006).

    ADS  Article  Google Scholar 

  36. 36

    Yoo, S. J. B. Future prospects of silicon photonics in next generation communication and computing systems. Electron. Lett. 45, 584–588 (2009).

    Article  Google Scholar 

  37. 37

    Ishizaki, K. et al. Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures. Opt. Express 23, A1040–A1050 (2015).

    Article  Google Scholar 

  38. 38

    Zhang, A., Kim, H., Cheng, J. & Lo, Y.-H. Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 10, 2117–2120 (2010).

    ADS  Article  Google Scholar 

  39. 39

    Shigeta, H. et al. Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals. Appl. Phys. Lett. 101, 161103 (2012).

    ADS  Article  Google Scholar 

  40. 40

    Baba, T. Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008).

    ADS  Article  Google Scholar 

  41. 41

    Ko, W. S. et al. Illumination angle insensitive single indium phosphide tapered nanopillar solar cell. Nano Lett. 15, 4961–4967 (2015).

    ADS  Article  Google Scholar 

  42. 42

    Xi, J. Q. et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon. 1, 176–179 (2007).

    ADS  Article  Google Scholar 

  43. 43

    Logeeswaran, V. et al. A perspective on nanowire photodetectors: current status, future challenges, and opportunities. IEEE J. Sel. Top. Quantum Electron. 17, 1002–1032 (2011).

    Article  Google Scholar 

  44. 44

    Williams, K. J., Esman, R. D. & Dagenais, M. Nonlinearities in p-i-n microwave photodetectors. J. Lightw. Technol. 14, 84–96 (1996).

    ADS  Article  Google Scholar 

  45. 45

    Islam, M. S. et al. High power and highly linear monolithically integrated distributed balanced photodetectors. J. Lightw. Technol. 20, 285–295 (2002).

    ADS  Article  Google Scholar 

  46. 46

    Moeneclaey, B. et al. A 64 Gb/s PAM-4 linear optical receiver. Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC), paper M3C.5 (OSA, 2015).

  47. 47

    Rush, K., Draving, S. & Kerley, J. Characterizing high-speed oscilloscopes. IEEE Spectrum 27, 38–39 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S.P. Wang and S.Y. Wang Partnership for financial support, and also acknowledge partial support from the Army Research Office (ARO- W911NF-14-4-0341) and the National Science Foundation (NSF CMMI-1235592).

Author information

Affiliations

Authors

Contributions

E.P.D., T.Y., A.F.E. and S.G. simulated the photodiode structures. M.S.I., H.H.M., Y.G., H.C. and S.-Y.W. designed the photodiodes. Y.G., H.C., K.G.P. and H.H.M. fabricated the devices. H.C., S.G., A.K., A.S.M., Y.W. and X.Z. carried out the d.c. and high-speed characterization of the photodiodes. Y.G., H.C., S.G., A.F.E., T.Y. and A.K. discussed the processing and characterization results and analysed the data. Y.G., H.C., S.-Y.W. and M.S.I. drafted the manuscript. S.-Y.W., T.Y., E.P.D., A.F.E. and M.S.I. revised the manuscript. S.-Y.W. and M.S.I. co-supervised the research.

Corresponding author

Correspondence to M. Saif Islam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3125 kb)

Supplementary information

Supplementary Movie 1 (AVI 3779 kb)

Supplementary information

Supplementary Movie 2 (AVI 3804 kb)

Supplementary information

Supplementary Movie 3 (AVI 2156 kb)

Supplementary information

Supplementary Movie 4 (AVI 2023 kb)

Supplementary information

Supplementary Movie 5 (AVI 27434 kb)

Supplementary information

Supplementary Movie 6 (AVI 20902 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Cansizoglu, H., Polat, K. et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nature Photon 11, 301–308 (2017). https://doi.org/10.1038/nphoton.2017.37

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing