Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-photon imager based on a superconducting nanowire delay line

A Corrigendum to this article was published on 01 September 2017

This article has been updated

Abstract

Detecting spatial and temporal information of individual photons is critical to applications in spectroscopy, communication, biological imaging, astronomical observation and quantum-information processing. Here we demonstrate a scalable single-photon imager using a single continuous superconducting nanowire that is not only a single-photon detector but also functions as an efficient microwave delay line. In this context, photon-detection pulses are guided in the nanowire and enable the readout of the position and time of photon-absorption events from the arrival times of the detection pulses at the nanowire's two ends. Experimentally, we slowed down the velocity of pulse propagation to 2% of the speed of light in free space. In a 19.7 mm long nanowire that meandered across an area of 286 × 193 μm2, we were able to resolve 590 effective pixels with a temporal resolution of 50 ps (full width at half maximum). The nanowire imager presents a scalable approach for high-resolution photon imaging in space and time.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SNSPI.
Figure 2: Spatial and temporal detection by the SNSPI.
Figure 3: Detection performance of the SNSPI.

Change history

  • 14 August 2017

    In the version of this Article originally published, in Fig. 3c, in the y axis label, the units '(c.p.s.)' should not have been included; the label should have read "Dark counts". This has now been corrected in the online versions of the Article.

References

  1. 1

    Zhang, L., Silberhorn, C. & Walmsley, I. A. Secure quantum key distribution using continuous variables of single photons. Phys. Rev. Lett. 100, 1–4 (2008).

    Google Scholar 

  2. 2

    Walborn, S. P., Lemelle, D. S., Almeida, M. P. & Ribeiro, P. H. S. Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 1–4 (2006).

    Article  Google Scholar 

  3. 3

    Mirhosseini, M. et al. High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Lamas-Linares, A. et al. Nanosecond-scale timing jitter for single photon detection in transition edge sensors. Appl. Phys. Lett. 102, 231117 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Gao, J. et al. A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics. Appl. Phys. Lett. 101, 142602 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    ADS  Article  Google Scholar 

  7. 7

    You, L. et al. Jitter analysis of a superconducting nanowire single photon detector. AIP Adv. 3, 72135 (2013).

    Article  Google Scholar 

  8. 8

    Kerman, A. J., Rosenberg, D., Molnar, R. J. & Dauler, E. A. Readout of superconducting nanowire single-photon detectors at high count rates. J. Appl. Phys. 113, 144511 (2013).

    ADS  Article  Google Scholar 

  9. 9

    Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).

    ADS  Article  Google Scholar 

  10. 10

    Yang, X. et al. Superconducting nanowire single photon detector with on-chip bandpass filter. Opt. Express 22, 16267–16272 (2014).

    ADS  Google Scholar 

  11. 11

    Marsili, F. et al. Efficient single photon detection from 500 nanometer to 5 micron wavelength. Nano Lett. 12, 4799–4804 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Rosenberg, D., Kerman, A. J., Molnar, R. J. & Dauler, E. A. High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express 21, 1440–1447 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Zhao, Q. et al. Superconducting-nanowire single-photon-detector linear array. Appl. Phys. Lett. 103, 142602 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Miki, S., Yamashita, T., Wang, Z. & Terai, H. A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection. Opt. Express 22, 7811–7820 (2014).

    ADS  Article  Google Scholar 

  15. 15

    Allman, M. S. et al. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Appl. Phys. Lett. 106, 192601 (2015).

    ADS  Article  Google Scholar 

  16. 16

    Hofherr, M. et al. Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 23, 2501205 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Hofherr, M. et al. Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit. Opt. Express 20, 28683–28697 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Doerner, S., Kuzmin, A., Wuensch, S., Ilin, K. & Siegel, M. Operation of superconducting nanowire single-photon detectors embedded in lumped-element resonant circuits. IEEE Trans. Appl. Supercond. 26, 2200205 (2016).

    Article  Google Scholar 

  19. 19

    Gol'tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    ADS  Article  Google Scholar 

  20. 20

    Yang, J. K. W. et al. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 17, 581–585 (2007).

    ADS  Article  Google Scholar 

  21. 21

    Santavicca, D. F., Adams, J. K., Grant, L. E., McCaughan, A. N. & Berggren, K. K. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance. J. Appl. Phys. 119, 234302 (2016).

    ADS  Article  Google Scholar 

  22. 22

    Calandri, N., Zhao, Q.-Y., Zhu, D., Dane, A. & Berggren, K. K. Superconducting nanowire detector jitter limited by detector geometry. Appl. Phys. Lett. 109, 152601 (2016).

    ADS  Article  Google Scholar 

  23. 23

    Pond, J., Claassen, J. & Carter, W. Kinetic inductance microstrip delay lines. IEEE Trans. Magn. 23, 903–906 (1987).

    ADS  Article  Google Scholar 

  24. 24

    Klopfenstein, R. W. A transmission line taper of improved design. Proc. IRE 44, 31–35 (1956).

    Article  Google Scholar 

  25. 25

    Tsiatmas, A., Fedotov, V. A., García de Abajo, F. J. & Zheludev, N. I. Low-loss terahertz superconducting plasmonics. New J. Phys. 14, 115006 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Majedi, A. H. Theoretical investigations on THz and optical superconductive surface plasmon interface. IEEE Trans. Appl. Supercond. 19, 907–910 (2009).

    ADS  Article  Google Scholar 

  27. 27

    Jagutzki, O. et al. A broad-application microchannel-plate detector system for advanced particle or photon detection tasks: large area imaging, precise multi-hit timing information and high detection rate. Nucl. Instrum. Methods Phys. Res. A 477, 244–249 (2002).

    ADS  Article  Google Scholar 

  28. 28

    Duarte, M. F. et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Gerrits, T. et al. Progress toward a high-resolution single-photon camera based on superconducting single photon detector arrays and compressive sensing. In Conf. Lasers and Electro-Optics (CLEO) STh30 (Optical Society of America, 2015).

  30. 30

    Zhao, Q. et al. Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits. Opt. Lett. 39, 1869–1872 (2014).

    ADS  Article  Google Scholar 

  31. 31

    Dorenbos, S. N. et al. Superconducting single photon detectors with minimized polarization dependence. Appl. Phys. Lett. 93, 161102 (2008).

    ADS  Article  Google Scholar 

  32. 32

    Zheng, F. et al. Design of efficient superconducting nanowire single photon detectors with high polarization sensitivity for polarimetric imaging. J. Opt. Soc. Am. B 33, 2256–2264 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Gaudio, R., op ’t Hoog, K. P. M., Zhou, Z., Sahin, D. & Fiore, A. Inhomogeneous critical current in nanowire superconducting single-photon detectors. Appl. Phys. Lett. 105, 222602 (2014).

    ADS  Article  Google Scholar 

  34. 34

    Annunziata, A. J. et al. Tunable superconducting nanoinductors. Nanotechnology 21, 445202 (2010).

    Article  Google Scholar 

  35. 35

    Najafi, F. et al. Fabrication process yielding saturated nanowire single-photon detectors with 24-ps jitter. IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).

    Article  Google Scholar 

  36. 36

    Yang, J. et al. Fabrication development for nanowire GHz-counting-rate single-photon detectors. IEEE Trans. Appl. Supercond. 15, 626–630 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Hobbs, C.-S. Kim and M. Mondol for their technical support in nanofabrication, and P. Mauskopf, J.K.W. Yang, Z. Zhang and E. Toomey for scientific discussion. This research was supported by the National Science Foundation (NSF) grants under contract no. ECCS-1509486 (Massachusetts Institute of Technology (MIT)) and no. ECCS-1509253 (University of North Florida) and the Air Force Office of Scientific Research grant under contract no. FA9550-14-1-0052. D.Z. is supported by a National Science Scholarship from A*STAR, Singapore. N.C. thanks the Roberto Rocca project for financial support during his visit to MIT. A.E.D. was supported by a National Aeronautics and Space Administration Space Technology Research Fellowship (award no. NNX14AL48H). A.N.M. was supported by a fellowship from the National Science Foundation iQuISE program (award no. 0801525).

Author information

Affiliations

Authors

Contributions

Q.-Y.Z. and K.K.B. came up with the initial idea. Q.-Y.Z. designed and fabricated the nanowire imager. Q.-Y.Z. and D.Z. took the optical measurements. Q.-Y.Z., N.C., F.B. and H.-Z.W. characterized initial devices. A.E.D. developed the superconducting films. Q.-Y.Z., A.N.M. and D.F.S. did the microwave simulations. Q.-Y.Z. analysed the data and programmed the imaging script. K.K.B. supervised the project. Q.-Y.Z. and K.K.B. wrote the paper with input from all the other authors.

Corresponding author

Correspondence to Karl K. Berggren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 966 kb)

Supplementary information

Supplementary Movie 1 (MOV 19999 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, QY., Zhu, D., Calandri, N. et al. Single-photon imager based on a superconducting nanowire delay line. Nature Photon 11, 247–251 (2017). https://doi.org/10.1038/nphoton.2017.35

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing