Space–time control of free induction decay in the extreme ultraviolet

Abstract

Ultrafast extreme-ultraviolet (XUV) and X-ray sources are revolutionizing our ability to follow femtosecond processes with ångström-scale resolution. The next frontier is to simultaneously control the direction, duration and timing of such radiation. Here, we demonstrate a fully functional opto-optical modulator for XUV light, similar to modulators available at infrared (IR) and visible wavelengths. It works by using an IR pulse to control the spatial and spectral phase of the free induction decay that results from using attosecond pulses to excite a gas. The modulator allows us to send the XUV light in a direction of our choosing at a time of our choosing. The inherent synchronization of the XUV emission to the control pulse will allow laser-pump/X-ray probe experiments with sub-femtosecond time resolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic illustration of XFID radiation control.
Figure 2: Experimental spatial–spectral profile of the XUV pulse consisting of the 9th harmonic of 780 nm after transmission through argon.
Figure 3: Delay dependence of the on- and off-axis emission.
Figure 4: Theroretical calculations.
Figure 5: Delay dependence of XFID emission.

References

  1. 1

    Debye, P. & Sears, F. W. On the scattering of light by supersonic waves. Proc. Natl Acad. Sci. USA 18, 409–414 (1932).

    ADS  Article  Google Scholar 

  2. 2

    Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    ADS  Article  Google Scholar 

  3. 3

    Kao, C. K. Nobel lecture: Sand from centuries past: send future voices fast. Rev. Mod. Phys. 82, 2299–2303 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Article  Google Scholar 

  5. 5

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Article  Google Scholar 

  6. 6

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Article  Google Scholar 

  7. 7

    McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    ADS  Article  Google Scholar 

  8. 8

    Ferray, M., L'Huillier, A., Li, X. F., Mainfray, G. & Manus, C. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  9. 9

    Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    ADS  Article  Google Scholar 

  10. 10

    Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Article  Google Scholar 

  11. 11

    Lewenstein, M., Balcou, P., Ivanov, M., L'Huillier, A. & Corkum, P. B. Theory of high-order harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Article  Google Scholar 

  12. 12

    Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    ADS  Article  Google Scholar 

  15. 15

    Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    ADS  Article  Google Scholar 

  16. 16

    Stockman, M., Kling, M., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nat. Photon. 1, 539–544 (2007).

    ADS  Article  Google Scholar 

  17. 17

    Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Article  Google Scholar 

  19. 19

    Fang, L. et al. Double core-hole production in N2: beating the Auger clock. Phys. Rev. Lett. 105, 083005 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Cryan, J. P. et al. Auger electron angular distribution of double core-hole states in the molecular reference frame. Phys. Rev. Lett. 105, 083044 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Glownia, J. M. et al. Time-resolved pump-probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010).

    ADS  Article  Google Scholar 

  22. 22

    Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Doumy, G. et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    ADS  Article  Google Scholar 

  26. 26

    Bloch, F. Nuclear induction. Phys. Rev. 70, 460–474 (1946).

    ADS  Article  Google Scholar 

  27. 27

    Hahn, E. L. Nuclear induction due to free Larmor precession. Phys. Rev. 77, 297–298 (1950).

    ADS  Article  Google Scholar 

  28. 28

    Brewer, R. G. & Shoemaker, R. L. Optical free induction decay. Phys. Rev. A 6, 2001–2007 (1972).

    ADS  Article  Google Scholar 

  29. 29

    Hopf, F. A., Shea, R. F. & Scully, M. O. Theory of optical free-induction decay and two-photon superradiance. Phys. Rev. A 7, 2105–2110 (1973).

    ADS  Article  Google Scholar 

  30. 30

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    ADS  Article  Google Scholar 

  31. 31

    Gruson, V. et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science 354, 734–738 (2016).

    ADS  Article  Google Scholar 

  32. 32

    Kaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 354, 738–741 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Ott, C. et al. Reconstruction and control of a time-dependent two-electron wave packet. Nature 516, 374–378 (2014).

    ADS  Article  Google Scholar 

  35. 35

    Beck, A. R. et al. Attosecond transient absorption probing of electronic superpositions of bound states in neon: detection of quantum beats. New J. Phys. 16, 113016 (2014).

    ADS  Article  Google Scholar 

  36. 36

    Liao, C.-T., Sandhu, A., Camp, S., Schafer, K. J. & Gaarde, M. B. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains. Phys. Rev. Lett. 114, 143002 (2015).

    ADS  Article  Google Scholar 

  37. 37

    Wu, M., Chen, S., Gaarde, M. B. & Schafer, K. J. Time-domain perspective on Autler-Townes splitting in attosecond transient absorption of laser-dressed helium atoms. Phys. Rev. A 88, 043416 (2013).

    ADS  Article  Google Scholar 

  38. 38

    Bernhardt, B. et al. High-spectral-resolution attosecond absorption spectroscopy of autoionization in xenon. Phys. Rev. A 89, 023408 (2014).

    ADS  Article  Google Scholar 

  39. 39

    Vura-Weis, J. et al. Femtosecond M2,3-edge spectroscopy of transition-metal oxides: photoinduced oxidation state change in α-Fe2O3 . J. Phys. Chem. Lett. 4, 3667–3671 (2013).

    Article  Google Scholar 

  40. 40

    Beaulieu, S. et al. Role of excited states in high-order harmonic generation. Phys. Rev. Lett. 117, 203001 (2016).

    ADS  Article  Google Scholar 

  41. 41

    Camp, S., Schafer, K. J. & Gaarde, M. B . Interplay between resonant enhancement and quantum path dynamics in harmonic generation in helium. Phys. Rev. A 92, 013404 (2015).

    ADS  Article  Google Scholar 

  42. 42

    Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    ADS  Article  Google Scholar 

  43. 43

    Gaarde, M. B., Buth, C., Tate, J. L. & Schafer, K. J. Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium. Phys. Rev. A 83, 013419 (2011).

    ADS  Article  Google Scholar 

  44. 44

    Berrah, N. et al. Angular-distribution parameters and R-matrix calculation of Ar 3s−1–np resonances. J. Phys. B 29, 5351–5365 (1996).

    ADS  Article  Google Scholar 

  45. 45

    Lambert, G. et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nat. Phys. 4, 296–300 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Swedish Foundation for Strategic Research, the Crafoord Foundation, the European Research Council (no. 339253), the Swedish Research Council, the Knut and Alice Wallenberg Foundation and the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 641789 MEDEA (Molecular Electron Dynamics investigated by IntensE Fields and Attosecond Pulses). Research at Louisiana State University was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under contract no. DE-SC0010431. Portions of this research were conducted with high performance computing resources provided by Louisiana State University (http://www.hpc.lsu.edu).

Author information

Affiliations

Authors

Contributions

S.B., E.W.L., D.K., L.R. and J.M. designed the experiment and built the experimental set-up. S.B. and E.W.L. conducted the experiments. A.L.H., C.L.A., M.M. and E.W.L. delivered and maintained the experimental laser system. S.C., M.B.G. and K.J.S. carried out the theoretical calculations and contributed to the interpretation of the experimental results. J.M., E.W.L., S.B. and K.J.S. wrote a major part of the manuscript. All authors contributed to the discussion of the results and commented on the manuscript.

Corresponding author

Correspondence to J. Mauritsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 322 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bengtsson, S., Larsen, E., Kroon, D. et al. Space–time control of free induction decay in the extreme ultraviolet. Nature Photon 11, 252–258 (2017). https://doi.org/10.1038/nphoton.2017.30

Download citation

Further reading