Article | Published:

Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation

Nature Photonics volume 11, pages 242246 (2017) | Download Citation

Abstract

The capability of synchrotron radiation to produce ultrabright emission has attracted considerable interest over the last half a century. To date, magnetic undulators with a period of several centimetres are commonly used for wiggling relativistic electrons in a modulated field. Here, we propose a novel compact undulator with a period down to the submillimetre level based on a spontaneous electric field that is driven by a femtosecond laser. Both the guided energetic electrons and the gyrotron-like undulator are spontaneously produced by irradiating a thin metallic wire with an intense laser pulse. An intense radial electric field instantaneously created on the wire can guide the electrons' helical motion along the wire and induce periodic THz emission. We have demonstrated that this scheme can produce intense THz sources with a conversion efficiency of 1% that are frequency-tunable by adjusting the diameter of the wire. Amplified emission of THz radiation by more than tenfold has been observed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nat. Photon. 5, 485–488 (2011).

  2. 2.

    et al. Chemical recognition in terahertz time-domain spectroscopy and imaging. Semicond. Sci. Technol. 20, 246–253 (2005).

  3. 3.

    et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

  4. 4.

    et al. FELS, nice toys or efficient tools? Nucl. Instrum. Methods Phys. Res. A 528, 8–14 (2004).

  5. 5.

    et al. Far-infrared free-electron lasers and their applications. Contemp. Phys. 50, 391–406 (2009).

  6. 6.

    et al. High-power terahertz radiation from relativistic electrons. Nature 420, 153–156 (2002).

  7. 7.

    , & Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 100, 015101 (2008).

  8. 8.

    , , & Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984).

  9. 9.

    , , & Generation of 30 μJ single-cycle terahertz pulses at100 Hz repetition rate by optical rectification. Opt. Lett. 33, 2497–2499 (2008).

  10. 10.

    , & Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005 (2006).

  11. 11.

    et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 98, 235002 (2007).

  12. 12.

    , , , & Subpicosecond electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725–2728 (1993).

  13. 13.

    et al. Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction. Appl. Phys. B 90, 373–377 (2008).

  14. 14.

    et al. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator. Phys. Rev. Lett. 111, 074802 (2013).

  15. 15.

    Classical Electrodynamics 2nd edn (Wiley, 1975).

  16. 16.

    et al. An ultracompact X-ray source based on a laser-plasma undulator. Nat. Commun. 5, 4736 (2014).

  17. 17.

    , & High-gain Thompson-scattering X-ray free-electron laser by time-synchronic laterally tilted optical wave. Phys. Rev. Lett. 110, 064802 (2013).

  18. 18.

    , , , & Plasma undulator based on laser excitation of wakefields in a plasma channel. Phys. Rev. Lett. 114, 145003 (2015).

  19. 19.

    et al. Electron emission at locked phases from the laser-driven surface plasma wave. Phys. Rev. Lett. 109, 115002 (2012).

  20. 20.

    et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors. Nat. Phys. 12, 355–360 (2016).

  21. 21.

    et al. Laser-driven ultrafast field propagation on solid surfaces. Phys. Rev. Lett. 102, 194801 (2009).

  22. 22.

    et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses. Phys. Rev. Lett. 106, 255001 (2011).

  23. 23.

    , , , & Divergence-free transport of laser-produced fast electrons along a meter-long wire target. Phys. Rev. Lett. 110, 155001 (2013).

  24. 24.

    & Electro-optic measurement of THz field pulses with a chirped optical beam. Appl. Phys. Lett. 72, 1945–1947 (1998).

  25. 25.

    , & Pulse shape measurement using Golay detector. J. Infrared Millim. Terahz Waves 33, 306–318 (2012).

  26. 26.

    & Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).

  27. 27.

    , , & Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).

  28. 28.

    , & Characterization of terahertz field confinement at the end of a tapered metal wire waveguide. Appl. Phys. Lett. 95, 031104 (2009).

  29. 29.

    , , , & Strong subterahertz surface waves generated on a metal wire by high-intensity laser pulses. Sci. Rep. 5, 8268 (2015).

  30. 30.

    & Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quantum Electron. 33, 1954–1968 (1997).

  31. 31.

    Intense coherent submillimeter radiation in electron storage rings. Phys. Rev. Lett. 48, 580–583 (1982).

  32. 32.

    et al. Coherence effects in long-wavelength infrared synchrotron radiation emission. Phys. Rev. Lett. 2, 261–263 (1989).

  33. 33.

    et al. Observation of coherent synchrotron radiation. Phys. Rev. Lett. 63, 1245–1248 (1989).

  34. 34.

    & Accelerator- and laser-based sources of high-field terahertz pulses. J. Phys. B 46, 192001 (2013).

  35. 35.

    et al. DESY Technical Report TESLA Report No. 2003-11 (TESLA, 2003).

Download references

Acknowledgements

Fruitful discussions with B.B. Jin in Nanjing University and Y.T. Li in the Institute of Physics, Chinese Academy of Sciences are appreciated. This work was supported by the National Natural Science Foundation of China (grant nos 11425418, 11127901, 61521093, 11405244), the Shanghai Natural Science Funds (contract no.14ZR1444800), the Strategic Priority Research Program (B) (grant no. XDB16), State Key Laboratory Program of Chinese Ministry of Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University and the National Basic Research Program of China (2014CB339802).

Author information

Affiliations

  1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

    • Ye Tian
    • , Jiansheng Liu
    • , Yafeng Bai
    • , Shiyi Zhou
    • , Haiyi Sun
    • , Ruxin Li
    •  & Zhizhan Xu
  2. Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China

    • Jiansheng Liu
    • , Ruxin Li
    •  & Zhizhan Xu
  3. Institute of Modern Optics, Nankai University, Key Laboratory of Optical Information Science and Technology, Ministry of Education, Tianjin 300071, China

    • Weiwei Liu
    •  & Jiayu Zhao
  4. University of Chinese Academy of Sciences, Beijing 100049, China

    • Ruxin Li
  5. School of Physical Science and Technology, ShanghaiTech University, Shanghai 20031, China

    • Ruxin Li
    •  & Zhizhan Xu

Authors

  1. Search for Ye Tian in:

  2. Search for Jiansheng Liu in:

  3. Search for Yafeng Bai in:

  4. Search for Shiyi Zhou in:

  5. Search for Haiyi Sun in:

  6. Search for Weiwei Liu in:

  7. Search for Jiayu Zhao in:

  8. Search for Ruxin Li in:

  9. Search for Zhizhan Xu in:

Contributions

All authors contributed significantly to the work presented in this paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jiansheng Liu or Weiwei Liu or Ruxin Li or Zhizhan Xu.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2017.16

Further reading