Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation

Abstract

The capability of synchrotron radiation to produce ultrabright emission has attracted considerable interest over the last half a century. To date, magnetic undulators with a period of several centimetres are commonly used for wiggling relativistic electrons in a modulated field. Here, we propose a novel compact undulator with a period down to the submillimetre level based on a spontaneous electric field that is driven by a femtosecond laser. Both the guided energetic electrons and the gyrotron-like undulator are spontaneously produced by irradiating a thin metallic wire with an intense laser pulse. An intense radial electric field instantaneously created on the wire can guide the electrons' helical motion along the wire and induce periodic THz emission. We have demonstrated that this scheme can produce intense THz sources with a conversion efficiency of 1% that are frequency-tunable by adjusting the diameter of the wire. Amplified emission of THz radiation by more than tenfold has been observed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a laser-driven wire-guided undulator for terahertz emission.
Figure 2: Characterization of LWGU THz radiation.
Figure 3: Simulations of the electrons' trajectories and radiation.
Figure 4: Characterization of simulated THz radiation.

Similar content being viewed by others

References

  1. Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nat. Photon. 5, 485–488 (2011).

    Article  ADS  Google Scholar 

  2. Fischer, B. et al. Chemical recognition in terahertz time-domain spectroscopy and imaging. Semicond. Sci. Technol. 20, 246–253 (2005).

    Article  Google Scholar 

  3. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    Article  ADS  Google Scholar 

  4. Van der Meer, A. F. G. et al. FELS, nice toys or efficient tools? Nucl. Instrum. Methods Phys. Res. A 528, 8–14 (2004).

    Article  ADS  Google Scholar 

  5. Murdin, B. N. et al. Far-infrared free-electron lasers and their applications. Contemp. Phys. 50, 391–406 (2009).

    Article  ADS  Google Scholar 

  6. Carr, G. L. et al. High-power terahertz radiation from relativistic electrons. Nature 420, 153–156 (2002).

    Article  ADS  Google Scholar 

  7. Glyavin, M. Y., Luchinin, A. G. & Golubiatnikov, G. Y. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 100, 015101 (2008).

    Article  ADS  Google Scholar 

  8. Auston, D. H., Cheung, K., Valdmanis, J. & Kleinman, D. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984).

    Article  ADS  Google Scholar 

  9. Stepanov, A. G., Bonacina, L., Chekalin, S. V. & Wolf, J. P. Generation of 30 μJ single-cycle terahertz pulses at100 Hz repetition rate by optical rectification. Opt. Lett. 33, 2497–2499 (2008).

    Article  ADS  Google Scholar 

  10. Xie, X., Dai, J. M. & Zhang, X. C. Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005 (2006).

    Article  ADS  Google Scholar 

  11. D'Amico, C. et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 98, 235002 (2007).

    Article  ADS  Google Scholar 

  12. Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R. W. Subpicosecond electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725–2728 (1993).

    Article  ADS  Google Scholar 

  13. Sagiska, A. et al. Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction. Appl. Phys. B 90, 373–377 (2008).

    Article  ADS  Google Scholar 

  14. Gopal, A. et al. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator. Phys. Rev. Lett. 111, 074802 (2013).

    Article  ADS  Google Scholar 

  15. Jackson, J. D. Classical Electrodynamics 2nd edn (Wiley, 1975).

    MATH  Google Scholar 

  16. Andriyash, I. A. et al. An ultracompact X-ray source based on a laser-plasma undulator. Nat. Commun. 5, 4736 (2014).

    Article  ADS  Google Scholar 

  17. Chang, C., Tang, C. X. & Wu, J. H. High-gain Thompson-scattering X-ray free-electron laser by time-synchronic laterally tilted optical wave. Phys. Rev. Lett. 110, 064802 (2013).

    Article  ADS  Google Scholar 

  18. Rykovanov, S. G., Schroeder, C. B., Esarey, E., Geddes, C. G. R. & Leemans, W. P. Plasma undulator based on laser excitation of wakefields in a plasma channel. Phys. Rev. Lett. 114, 145003 (2015).

    Article  ADS  Google Scholar 

  19. Tian, Y. et al. Electron emission at locked phases from the laser-driven surface plasma wave. Phys. Rev. Lett. 109, 115002 (2012).

    Article  ADS  Google Scholar 

  20. Thévenet, M. et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors. Nat. Phys. 12, 355–360 (2016).

    Article  Google Scholar 

  21. Quinn, K. et al. Laser-driven ultrafast field propagation on solid surfaces. Phys. Rev. Lett. 102, 194801 (2009).

    Article  ADS  Google Scholar 

  22. Tokita, S. et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses. Phys. Rev. Lett. 106, 255001 (2011).

    Article  ADS  Google Scholar 

  23. Nakajima, H., Tokita, S., Inoue, S., Hashida, M. & Sakabe, S. Divergence-free transport of laser-produced fast electrons along a meter-long wire target. Phys. Rev. Lett. 110, 155001 (2013).

    Article  ADS  Google Scholar 

  24. Jiang, Z. P. & Zhang, X. C. Electro-optic measurement of THz field pulses with a chirped optical beam. Appl. Phys. Lett. 72, 1945–1947 (1998).

    Article  ADS  Google Scholar 

  25. Kaveev, A. K., Kaveeva, E. G. & Adaev, E. A. Pulse shape measurement using Golay detector. J. Infrared Millim. Terahz Waves 33, 306–318 (2012).

    Article  Google Scholar 

  26. Wang, K. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).

    Article  ADS  Google Scholar 

  27. Maier, S. A., Andrews, S. R., Martin-Moreno, L. & Garcia-Vidal, F. J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).

    Article  ADS  Google Scholar 

  28. Astley, V., Mendis, R. & Mittleman, D. M. Characterization of terahertz field confinement at the end of a tapered metal wire waveguide. Appl. Phys. Lett. 95, 031104 (2009).

    Article  ADS  Google Scholar 

  29. Tokita, S., Sakabe, S., Nagashima, T., Hashida, M. & Inoue, S. Strong subterahertz surface waves generated on a metal wire by high-intensity laser pulses. Sci. Rep. 5, 8268 (2015).

    Article  ADS  Google Scholar 

  30. Wilks, S. & Kruer, W. Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quantum Electron. 33, 1954–1968 (1997).

    Article  ADS  Google Scholar 

  31. Michel, F. C. Intense coherent submillimeter radiation in electron storage rings. Phys. Rev. Lett. 48, 580–583 (1982).

    Article  ADS  Google Scholar 

  32. Williams, G. et al. Coherence effects in long-wavelength infrared synchrotron radiation emission. Phys. Rev. Lett. 2, 261–263 (1989).

    Article  ADS  Google Scholar 

  33. Nakazato, T. et al. Observation of coherent synchrotron radiation. Phys. Rev. Lett. 63, 1245–1248 (1989).

    Article  ADS  Google Scholar 

  34. Stojanovic, N. & Drescher, M. Accelerator- and laser-based sources of high-field terahertz pulses. J. Phys. B 46, 192001 (2013).

    Article  ADS  Google Scholar 

  35. Brunken, M. et al. DESY Technical Report TESLA Report No. 2003-11 (TESLA, 2003).

    Google Scholar 

Download references

Acknowledgements

Fruitful discussions with B.B. Jin in Nanjing University and Y.T. Li in the Institute of Physics, Chinese Academy of Sciences are appreciated. This work was supported by the National Natural Science Foundation of China (grant nos 11425418, 11127901, 61521093, 11405244), the Shanghai Natural Science Funds (contract no.14ZR1444800), the Strategic Priority Research Program (B) (grant no. XDB16), State Key Laboratory Program of Chinese Ministry of Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University and the National Basic Research Program of China (2014CB339802).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the work presented in this paper.

Corresponding authors

Correspondence to Jiansheng Liu, Weiwei Liu, Ruxin Li or Zhizhan Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Liu, J., Bai, Y. et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nature Photon 11, 242–246 (2017). https://doi.org/10.1038/nphoton.2017.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing