Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors

Abstract

Solution-processed phototransistors can substantially advance the performance of image sensors. Phototransistors exhibit large photoconductive gain and a sublinear responsivity to irradiance, which enables a logarithmic sensing of irradiance that is akin to the human eye and has a wider dynamic range than photodiode-based image sensors. Here, we present a novel solution-processed phototransistor composed of a heterostructure between a high-mobility organic semiconductor and an organic bulk heterojunction. The device efficiently integrates photogenerated charge during the period of a video frame then quickly discharges it, which significantly increases the signal-to-noise ratio compared with sampling photocurrent during readout. Phototransistor-based image sensors processed without photolithography on plastic substrates integrate charge with external quantum efficiencies above 100% at 100 frames per second. In addition, the sublinear responsivity to irradiance of these devices enables a wide dynamic range of 103 dB at 30 frames per second, which is competitive with state-of-the-art image sensors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Image sensing and phototransistor device architecture.
Figure 2: Phototransistor quasi-static device performance.
Figure 3: Phototransistor-based pixel architecture and operation.
Figure 4: Phototransistor-based pixel characterization.
Figure 5: Phototransistor-based image sensor.
Figure 6: Phototransistor-based image sensor characterization.

Similar content being viewed by others

References

  1. Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J. & Salleo, A. Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3–24 (2010).

    Article  Google Scholar 

  2. Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016).

    Article  Google Scholar 

  3. Ostfeld, A. E., Gaikwad, A. M., Khan, Y. & Arias, A. C. High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 6, 26122 (2016).

    Article  ADS  Google Scholar 

  4. Adrien, P. & Ana Claudia, A. Solution-processed image sensors on flexible substrates. Flexible Printed Electron. 1, 043001 (2016).

    Article  Google Scholar 

  5. Baeg, K.-J., Binda, M., Natali, D., Caironi, M. & Noh, Y.-Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

    Article  Google Scholar 

  6. Jansen-van Vuuren, R. D., Armin, A., Pandey, A. K., Burn, P. L. & Meredith, P. Organic photodiodes: the future of full color detection and image sensing. Adv. Mater. 28, 4766–4802 (2016).

    Article  Google Scholar 

  7. Pierre, A., Deckman, I., Lechêne, P. B. & Arias, A. C. High detectivity all-printed organic photodiodes. Adv. Mater. 27, 6411–6417 (2015).

    Article  Google Scholar 

  8. Giuseppina, P., Andrea, G., Marco, S., Dario, N. & Mario, C. Printed photodetectors. Semicond. Sci. Technol. 30, 104006 (2015).

    Article  Google Scholar 

  9. Ng, T. N., Wong, W. S., Chabinyc, M. L., Sambandan, S. & Street, R. A. Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92, 213303 (2008).

    Article  ADS  Google Scholar 

  10. Takahashi, T. et al. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 13, 5425–5430 (2013).

    Article  ADS  Google Scholar 

  11. Azzellino, G. et al. Fully inkjet-printed organic photodetectors with high quantum yield. Adv. Mater. 25, 6829–6833 (2013).

    Article  Google Scholar 

  12. Deng, W. et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 28, 2201–2208 (2016).

    Article  Google Scholar 

  13. Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    Article  ADS  Google Scholar 

  14. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature. 454, 748–753 (2008).

    Article  ADS  Google Scholar 

  15. Kim, J. et al. Ultrahigh detective heterogeneous photosensor arrays with in-pixel signal boosting capability for large-area and skin-compatible electronics. Adv. Mater. 28, 3078–3086 (2016).

    Article  Google Scholar 

  16. Kim, M. et al. Flexible organic phototransistors based on a combination of printing methods. Org. Electron. 15, 2677–2684 (2014).

    Article  Google Scholar 

  17. Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat Commun. 6, 8238 (2015).

    Article  ADS  Google Scholar 

  18. Milvich, J. et al. Flexible low-voltage organic phototransistors based on air-stable dinaphtho [2,3-b:2′,3′-f]thieno[3,2-b] thiophene (DNTT). Org. Electron. 20, 63–68 (2015).

    Article  Google Scholar 

  19. Liu, X., Lee, E. K., Kim, D. Y., Yu, H. & Oh, J. H. Flexible organic phototransistor array with enhanced responsivity via metal-ligand charge transfer. ACS Appl. Mater. Interfaces 8, 7291–7299 (2016).

    Article  Google Scholar 

  20. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotech. 7, 798–802 (2012).

    Article  ADS  Google Scholar 

  21. Kang, H.-S., Choi, C.-S., Choi, W.-Y., Kim, D.-H. & Seo, K.-S. Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors. Appl. Phys. Lett. 84, 3780–3782 (2004).

    Article  ADS  Google Scholar 

  22. Holst, G. C. & Lomheim, T. S. CMOS/CCD Sensors and Camera Systems Vol. 408 (JCD Publishing, 2007).

    Google Scholar 

  23. Street, R. A. Technology and Applications of Amorphous Silicon Vol. 37 (Springer, 2000).

    Book  Google Scholar 

  24. Gelinck, G. H. et al.. X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate. Org. Electron. 14, 2602–2609 (2013).

    Article  Google Scholar 

  25. Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photon. 3, 332–336 (2009).

    Article  ADS  Google Scholar 

  26. Zhang, L. et al. Large-area, flexible imaging arrays constructed by light-charge organic memories. Sci. Rep. 3, 1080 (2013).

    Article  Google Scholar 

  27. Xu, H. et al. A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 5, 11850–11855 (2013).

    Article  ADS  Google Scholar 

  28. Rim, Y. S. et al. Ultrahigh and broad spectral photodetectivity of an organic–inorganic hybrid phototransistor for flexible electronics. Adv. Mater. 27, 6885–6891 (2015).

    Article  Google Scholar 

  29. Chu, Y. et al. Photosensitive and flexible organic field-effect transistors based on interface trapping effect and their application in 2D imaging array. Adv. Sci. 3, 1500435 (2016).

    Article  Google Scholar 

  30. Nau, S., Wolf, C., Sax, S. & List-Kratochvil, E. J. Organic non-volatile resistive photo-switches for flexible image detector arrays. Adv. Mater. 27, 1048–1052 (2015).

    Article  Google Scholar 

  31. Lau, P. H. et al. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 13, 3864–3869 (2013).

    Article  ADS  Google Scholar 

  32. Ren, X. et al. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv. Mater. 28, 4832–4838 (2016).

    Article  Google Scholar 

  33. Peng, B. et al. High performance organic transistor active-matrix driver developed on paper substrate. Sci. Rep. 4, 6430 (2014).

    Article  Google Scholar 

  34. Han, H. et al. Broadband all-polymer phototransistors with nanostructured bulk heterojunction layers of NIR-sensing n-type and visible light-sensing p-type polymers. Sci. Rep. 5, 16457 (2015).

    Article  ADS  Google Scholar 

  35. Ahn, S.-E. et al. Metal oxide thin film phototransistor for remote touch interactive displays. Adv. Mater. 24, 2631–2636 (2012).

    Article  Google Scholar 

  36. Zan, H.-W. et al. Amorphous indium-gallium-zinc-oxide visible-light phototransistor with a polymeric light absorption layer. Appl. Phys. Lett. 97, 203506 (2010).

    Article  ADS  Google Scholar 

  37. Qian, C. et al. High-performance organic heterojunction phototransistors based on highly ordered copper phthalocyanine/para-sexiphenyl thin films. Adv. Funct. Mater. 27, 1604933 (2017).

    Article  Google Scholar 

  38. Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. Small 12, 1252–1294 (2016).

    Article  Google Scholar 

  39. Capelli, R. et al. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 9, 496–503 (2010).

    Article  ADS  Google Scholar 

  40. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photon. 3, 297–U295 (2009).

    Article  ADS  Google Scholar 

  41. Gaikwad, A. M. et al. Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 30, 18–29 (2016).

    Article  Google Scholar 

  42. Pierre, A. et al. All-printed flexible organic transistors enabled by surface tension-guided blade coating. Adv. Mater. 26, 5722–5727 (2014).

    Article  Google Scholar 

  43. Wang, X., Parrish, K. D., Malen, J. A. & Chan, P. K. L. Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles. Sci. Rep. 5, 16095 (2015).

    Article  ADS  Google Scholar 

  44. Zschieschang, U. et al. Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. Org. Electron. 12, 1370–1375 (2011).

    Article  Google Scholar 

  45. Kuribara, K. et al. Organic transistors with high thermal stability for medical applications. Nat. Commun. 3, 723 (2012).

    Article  ADS  Google Scholar 

  46. Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater. 3, 317–322 (2004).

    Article  ADS  Google Scholar 

  47. Campoy-Quiles, M. et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends RID C-1209-2008 RID F-6068-2011. Nat. Mater. 7, 158–164 (2008).

    Article  ADS  Google Scholar 

  48. Hamilton, M. C., Martin, S. & Kanicki, J. Thin-film organic polymer phototransistors. IEEE Trans. Electron. Dev. 51, 877–885 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF Graduate Fellowship Research Program (grant no. DGE-1106400). This work was also supported in part by Systems on Nanoscale Information fabriCs (SONIC), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA. The authors thank DuPont for provision of polyethylene naphthalate substrates, R. Karim for inkjet printing optimization and A. Javey and V. Subramanian for giving access to equipment in their laboratories.

Author information

Authors and Affiliations

Authors

Contributions

A.P. fabricated and characterized the device and image sensor. A.G. examined the material properties of the device. A.P. and A.C.A. prepared the manuscript.

Corresponding author

Correspondence to Adrien Pierre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, A., Gaikwad, A. & Arias, A. Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors. Nature Photon 11, 193–199 (2017). https://doi.org/10.1038/nphoton.2017.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing