Review

Fano resonances in photonics

Received:
Accepted:
Published online:

Abstract

Rapid progress in photonics and nanotechnology brings many examples of resonant optical phenomena associated with the physics of Fano resonances, with applications in optical switching and sensing. For successful design of photonic devices, it is important to gain deep insight into different resonant phenomena and understand their connection. Here, we review a broad range of resonant electromagnetic effects by using two effective coupled oscillators, including the Fano resonance, electromagnetically induced transparency, Kerker and Borrmann effects, and parity–time symmetry breaking. We discuss how to introduce the Fano parameter for describing a transition between two seemingly different spectroscopic signatures associated with asymmetric Fano and symmetric Lorentzian shapes. We also review the recent results on Fano resonances in dielectric nanostructures and metasurfaces.

  • Subscribe to Nature Photonics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

  2. 2.

    Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro darco. Il Nuovo Cimento 12, 154–161 (1935).

  3. 3.

    & Interacting resonances in atomic spectroscopy. Rep. Prog. Phys. 51, 1439–1478 (1988).

  4. 4.

    , , , & Switching from visibility to invisibility via Fano resonances: theory and experiment. Sci. Rep. 5, 8774 (2015).

  5. 5.

    et al. Mie scattering as a cascade of Fano resonances. Opt. Express 21, 30107–30113 (2013).

  6. 6.

    et al. Switchable invisibility of dielectric resonators. Phys. Rev. B 95, 165119 (2017).

  7. 7.

    et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

  8. 8.

    Die absorption von Röntgenstrahlen im fall der interferenz. Z. Phys. 127, 297–323 (1950).

  9. 9.

    , & Quadrupole transitions revealed by Borrmann spectroscopy. Nature 454, 196–199 (2008).

  10. 10.

    et al. Inverse Borrmann effect in photonic crystals. Phys. Rev. B 80, 235106 (2009).

  11. 11.

    , , , & What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014).

  12. 12.

    , , & All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

  13. 13.

    & Controlled electromagnetically induced transparency and Fano resonances in hybrid BEC-optomechanics. Sci. Rep. 6, 22651 (2016).

  14. 14.

    et al. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials. Sci. Rep. 6, 20801 (2016).

  15. 15.

    et al. Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode. ACS Nano 10, 2214–2224 (2016).

  16. 16.

    , , , & Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Phys. Rev. A 90, 051801 (2014).

  17. 17.

    et al. Fano resonances in semiconductor superlattices. Phys. Rev. Lett. 81, 874–877 (1998).

  18. 18.

    , , & Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. 13, 471–475 (2014).

  19. 19.

    , , & Raman scattering study on fully oxygenated YBa2Cu3O7 single crystals: xy anisotropy in the superconductivity-induced effects. Phys. Rev. Lett. 80, 825–828 (1998).

  20. 20.

    et al. Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ. Phys. Rev. B 58, 1043–1050 (1998).

  21. 21.

    , & Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

  22. 22.

    , & Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces. Phys. Rev. Lett. 108, 123901 (2012).

  23. 23.

    et al. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 6, 615–620 (2012).

  24. 24.

    et al. Bragg scattering induces Fano resonance in photonic crystals. Photon. Nanostruct. Fundam. Appl. 8, 86–93 (2010).

  25. 25.

    et al. Progress in 2D photonic crystal Fano resonance photonics. Progr. Quant. Electron. 38, 1–74 (2014).

  26. 26.

    Fano resonances and band structure of two-dimensional photonic structures. Phys. Rev. A 92, 043814 (2015).

  27. 27.

    et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

  28. 28.

    et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

  29. 29.

    , & Fano resonance in novel plasmonic nanostructures. Laser Photon. Rev. 7, 329–349 (2013).

  30. 30.

    et al. Directional fluorescence emission by individual V-antennas explained by mode expansion. ACS Nano 8, 8232–8241 (2014).

  31. 31.

    , , & Circular dichroism induced by Fano resonances in planar chiral oligomers. Laser Photon. Rev. 10, 137146 (2016).

  32. 32.

    , , & Designing plasmonic gratings with transformation optics. Phys. Rev. X 5, 031029 (2015).

  33. 33.

    , , & Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers. Phys. Rev. B 92, 045433 (2015).

  34. 34.

    , , , & Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements. Sci. Rep. 6, 20777 (2016).

  35. 35.

    et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008).

  36. 36.

    , , , & Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

  37. 37.

    et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

  38. 38.

    et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7, 791–795 (2013).

  39. 39.

    et al. On-chip zero-index metamaterials. Nat. Photon. 9, 738–742 (2015).

  40. 40.

    , , , & Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

  41. 41.

    et al. Optical extinction in a single layer of nanorods. Phys. Rev. Lett. 109, 143903 (2012).

  42. 42.

    & Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  43. 43.

    , & Generation of steep phase anisotropy with zero-backscattering by arrays of coupled dielectric nano-resonators. Appl. Phys. Lett. 105, 121112 (2014).

  44. 44.

    et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10, 1108–1117 (2016).

  45. 45.

    , , , & Invisible metallic mesh. Proc. Natl Acad. Sci. USA 113, 2568–2572 (2016).

  46. 46.

    , , & Fano resonance-induced negative optical scattering force on plasmonic nanoparticles. ACS Nano 9, 1926–1935 (2015).

  47. 47.

    et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

  48. 48.

    & Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014).

  49. 49.

    et al. Mapping plasmonic topological states at the nanoscale. Nanoscale 7, 11904–11908 (2015).

  50. 50.

    et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2012).

  51. 51.

    , & Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nat. Commun. 5, 4865 (2014).

  52. 52.

    , , & Spectral separation of optical spin based on antisymmetric Fano resonances. Sci. Rep. 5, 16585 (2015).

  53. 53.

    et al. Interferometric phase detection at X-ray energies via Fano resonance control. Phys. Rev. Lett. 114, 207401 (2015).

  54. 54.

    et al. Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9, 10628–10636 (2015).

  55. 55.

    et al. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale 8, 1635–1641 (2016).

  56. 56.

    , , , & Demonstration of a self-pulsing photonic crystal Fano laser. Nat. Photon. 11, 81–84 (2017).

  57. 57.

    , & Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nat. Photon. 10, 709–714 (2016).

  58. 58.

    , & Classical analogy of Fano resonances. Phys. Script. 74, 259–266 (2006).

  59. 59.

    , , , & From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. Phys. Rev. Lett. 108, 083902 (2012).

  60. 60.

    , & Fano-resonant metamaterials and their applications. Nanophotonics 2, 247–264 (2013).

  61. 61.

    & Multi-coupled resonant splitting with a nano-slot metasurface and PMMA phonons. In Proc. SPIE 9547, Plasmonics: Metallic Nanostructures and Their Optical Properties XIII 954710 (eds Boardman, A. D. & Tsai, D. P.) (SPIE, 2015).

  62. 62.

    , , , & Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006).

  63. 63.

    Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

  64. 64.

    & Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).

  65. 65.

    & Borrmann effect in photonic crystals. Opt. Lett. 42, 1389–1392 (2017).

  66. 66.

    et al. Narrowband and tunable anomalous transmission filters for spectral monitoring in the extreme ultraviolet wavelength region. Opt. Express 25, 1993–2008 (2017).

  67. 67.

    et al. Fano resonances in antennas: general control over radiation patterns. Phys. Rev. B 88, 205106 (2013).

  68. 68.

    , & Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

  69. 69.

    et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012).

  70. 70.

    , & Synthesis of polarization transformers. IEEE Trans. Antennas Propag. 61, 3102–3111 (2013).

  71. 71.

    , , & Microcavities (Oxford Univ. Press, 2007).

  72. 72.

    , & Dynamical Fano-like interference between Rabi oscillations and coherent phonons in a semiconductor microcavity system. Phys. Rev. Lett. 115, 157402 (2015).

  73. 73.

    , , , & Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

  74. 74.

    & Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

  75. 75.

    et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

  76. 76.

    et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

  77. 77.

    et al. Topological insulators in PT-symmetric lattices. In CLEO: 2015 paper FTh3D.3 (Optical Society of America, 2015).

  78. 78.

    et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2016).

  79. 79.

    , , , & PT symmetry in optics. Phys. Usp. 57, 1063–1082 (2014).

  80. 80.

    et al. Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photon. Rev. 10, 177–213 (2016).

  81. 81.

    , , & Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys. Rev. A 88, 053819 (2013).

  82. 82.

    , & Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

  83. 83.

    , , & Fano interference governs wave transport in disordered systems. Nat. Commun. 3, 914 (2012).

  84. 84.

    & Giant in-particle field concentration and Fano resonances at light scattering by high-refractive index particles. Phys. Rev. A 93, 053837 (2016).

  85. 85.

    & Fano resonance in high-permittivity dielectric spheres. J. Opt. Soc. Am. A 33, 707–711 (2016).

  86. 86.

    , , & Purcell effect and Lamb shift as interference phenomena. Sci. Rep. 6, 20599 (2016).

  87. 87.

    Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377–445 (1908).

  88. 88.

    et al. Fano resonances: a discovery that was not made 100 years ago. Opt. Photon. News 19, 48 (2008).

  89. 89.

    & Fano resonances in core-shell particles with high permittivity covers. In 2016 Progress in Electromagnetic Research Symposium (PIERS) 1715–1719 (PIERS, 2016).

  90. 90.

    et al. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 103, 023901 (2009).

  91. 91.

    et al. Percolation in photonic crystals revealed by Fano resonance. Preprint at (2016).

  92. 92.

    et al. Evidence of guided resonances in photonic quasicrystal slabs. Phys. Rev. B 84, 085135 (2011).

  93. 93.

    & (eds) Optical Properties of Photonic Structures: Interplay of Order and Disorder (CRC Press, 2012).

  94. 94.

    Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).

  95. 95.

    et al. Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities. Appl. Phys. Lett. 103, 091104 (2013).

  96. 96.

    , , & On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

  97. 97.

    et al. Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles. Appl. Phys. Lett. 105, 191107 (2014).

  98. 98.

    , , & Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles. ACS Photon. 1, 254–260 (2014).

  99. 99.

    et al. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates. Nanotechnology 27, 105302 (2016).

  100. 100.

    et al. Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications. Appl. Phys. Lett. 104, 071101 (2014).

  101. 101.

    et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016).

  102. 102.

    et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photon. 2, 216–227 (2015).

  103. 103.

    Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt. Express 23, 23787–23797 (2015).

  104. 104.

    et al. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett. 13, 1111–1117 (2013).

  105. 105.

    , , & Tunable nonlinear graphene metasurfaces. Phys. Rev. B 92, 161406 (2015).

  106. 106.

    , , , & Gyromagnetically induced transparency of metasurfaces. Phys. Rev. Lett. 112, 117402 (2014).

  107. 107.

    et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

  108. 108.

    et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

  109. 109.

    , , , & Excitation of trapped modes from a metasurface composed of only Z-shaped meta-atoms. Appl. Phys. Lett. 103, 184103 (2013).

  110. 110.

    , & Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface. J. Appl. Phys. 116, 153506 (2014).

  111. 111.

    & Metamaterials and plasmonics: from nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. Chin. Phys. B 23, 047809 (2014).

  112. 112.

    et al. Reconstruction and control of a time-dependent two-electron wave packet. Nature 516, 374–378 (2014).

  113. 113.

    et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 7, 10566 (2016).

  114. 114.

    , , , & Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

  115. 115.

    et al. Magnetoinfrared spectroscopic study of thin Bi2Te3 single crystals. Phys. Rev. B 93, 085140 (2016).

  116. 116.

    et al. Plasmon–phonon interactions in topological insulator microrings. Adv. Opt. Mater. 3, 1257–1263 (2015).

  117. 117.

    et al. Ultrafast terahertz dynamics of hot Dirac-electron surface scattering in the topological insulator Bi2Se3. Phys. Rev. B 89, 165137 (2014).

  118. 118.

    , , & Effect of Mn doping on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3. J. Phys. Condens. Matter 28, 165601 (2016).

  119. 119.

    , & Topological photonics. Nat. Photon. 8, 821–829 (2014).

  120. 120.

    et al. Topological modes in one-dimensional solids and photonic crystals. Phys. Rev. B 93, 125106 (2016).

  121. 121.

    et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances. Nano Lett. 16, 4857–4861 (2016).

  122. 122.

    , & Fano resonances and topological optics: an interplay of far-and near-field interference phenomena. J. Opt. 15, 073001 (2013).

Download references

Acknowledgements

We thank P. Belov, S. Flach, B. Hopkins, A. A. Kaplyansky, B. Luk'yanchuk and M. Scully for useful discussions and suggestions, and D. Powell for critical reading of the manuscript. We acknowledge financial support from the Russian Science Foundation (grant 15-12-00040) and the Australian Research Council.

Author information

Affiliations

  1. Ioffe Institute, St. Petersburg 194021, Russia

    • Mikhail F. Limonov
    • , Mikhail V. Rybin
    •  & Alexander N. Poddubny
  2. ITMO University, St. Petersburg 197101, Russia

    • Mikhail F. Limonov
    • , Mikhail V. Rybin
    • , Alexander N. Poddubny
    •  & Yuri S. Kivshar
  3. Nonlinear Physics Center, Australian National University, Canberra, Australian Capitial Territory 2601, Australia

    • Yuri S. Kivshar

Authors

  1. Search for Mikhail F. Limonov in:

  2. Search for Mikhail V. Rybin in:

  3. Search for Alexander N. Poddubny in:

  4. Search for Yuri S. Kivshar in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Mikhail V. Rybin.