Variable potentials for thermalized light and coupled condensates


Quantum gases in lattice potentials have been a powerful platform to simulate phenomena from solid-state physics, such as the Mott insulator transition1. In contrast to ultracold atoms, photon-based platforms, such as photonic crystals, coupled waveguides or lasers, usually do not operate in thermal equilibrium2,3,4,5. Advances towards photonic simulators of solid-state equilibrium effects include polariton lattice experiments6,7,8,9,10, and the demonstration of a photon condensate11,12. Here, we demonstrate a technique to create variable micropotentials for light using thermo-optic imprinting of a dye–polymer solution within an ultrahigh-finesse microcavity. We study the properties of single- and double-well potentials, and find the quality of structuring sufficient for thermalization and Bose–Einstein condensation of light. The investigation of effective photon–photon interactions along with the observed tunnel coupling between sites makes the system a promising candidate to directly populate entangled photonic many-body states. The demonstrated scalability suggests that thermo-optic imprinting provides a new approach for variable microstructuring in photonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Set-up and lattice realizations.
Figure 2: Thermalization, condensation and photon self-interactions in a single microsite.
Figure 3: Tunnelling between two microsites.
Figure 4: Eigenstate hybridization in a double-well.


  1. 1

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  2. 2

    Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    ADS  Article  Google Scholar 

  4. 4

    Nixon, M., Ronen, E., Friesem, A. A. & Davidson, N. Observing geometric frustration with thousands of coupled lasers. Phys. Rev. Lett. 110, 184102 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS  Article  Google Scholar 

  6. 6

    Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (1997).

    ADS  Article  Google Scholar 

  7. 7

    Lagoudakis, K. G., Pietka, B., Wouters, M., André, R. & Deveaud-Plédran, B. Coherent oscillations in an exciton–polariton Josephson junction. Phys. Rev. Lett. 105, 120403 (2010).

    ADS  Article  Google Scholar 

  8. 8

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    ADS  Article  Google Scholar 

  9. 9

    Abbarchi, M. et al. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nat. Phys. 9, 275–279 (2012).

    Article  Google Scholar 

  10. 10

    Cristofolini, P. et al. Optical superfluid phase transitions and trapping of polariton condensates. Phys. Rev. Lett. 110, 186403 (2013).

    ADS  Article  Google Scholar 

  11. 11

    Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Marelic, J. & Nyman, R. A. Experimental evidence for inhomogeneous pumping and energy-dependent effects in photon Bose-Einstein condensation. Phys. Rev. A 91, 033813 (2015).

    ADS  Article  Google Scholar 

  13. 13

    Hartmann, M. J., Brandao, F. G., & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

    Article  Google Scholar 

  14. 14

    Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nat. Phys. 2, 856 (2006).

    Article  Google Scholar 

  15. 15

    Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

    ADS  Article  Google Scholar 

  16. 16

    Schiro, M., Bordyuh, M., Öztop, B. & Türeci, H. E. Phase transitions of light in cavity QED lattices. Phys. Rev. Lett. 109, 053601 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Umucalilar, R. O. & Carusotto, I. Fractional quantum Hall states of photons in an array of dissipative coupled cavities. Phys. Rev. Lett. 108, 206809 (2012).

    ADS  Article  Google Scholar 

  18. 18

    de Leeuw, A.-W., Onishchenko, O., Duine, R. A. & Stoof, H. T. C. Effects of dissipation on the superfluid–Mott-insulator transition of photons. Phys. Rev. A 91, 033609 (2015).

    ADS  Article  Google Scholar 

  19. 19

    Flatten, L. C., Trichet, A. A. P. & Smith, J. M. Spectral engineering of coupled open-access microcavities. Laser Photon. Rev. 10, 257–263 (2016).

    ADS  Article  Google Scholar 

  20. 20

    Urbonas, D. et al. Zero-dimensional organic exciton–polaritons in tunable coupled Gaussian defect microcavities at room temperature. ACS Photon. 3, 1542–1545 (2016).

    Article  Google Scholar 

  21. 21

    Fujishige, S., Kubota, K. & Ando, I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 93, 3311–3313 (1989).

    Article  Google Scholar 

  22. 22

    Ishikawa, M., Misawa, H., Kitamura, N., Fujisawa, R. & Masuhara, H. Infrared laser-induced photo-thermal phase transition of an aqueous poly(N-isopropylacrylamide) solution in the micrometer dimension. Bull. Chem. Soc. Jpn 69, 59–66 (1996).

    Article  Google Scholar 

  23. 23

    Schmitt, J. et al. Thermalization kinetics of light: from laser dynamics to equilibrium condensation of photons. Phys. Rev. A 92, 011602 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Chuu, C.-S. et al. Direct observation of sub-Poissonian number statistics in a degenerate Bose gas. Phys. Rev. Lett. 95, 260403 (2005).

    ADS  Article  Google Scholar 

  25. 25

    Nyman, R. A. & Szymanska, M. H. Interactions in dye-microcavity photon condensates and the prospects for their observation. Phys. Rev. A 89, 033844 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Van der Wurff, E. C. I., de Leeuw, A.-W., Duine, R. A. & Stoof, H. T. C. Interaction effects on number fluctuations in a Bose-Einstein condensate of light. Phys. Rev. Lett. 113, 135301 (2014).

    ADS  Article  Google Scholar 

  27. 27

    Raghavan, S., Smerzi, A., Fantoni, S. & Shenoy, S. R. Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 620–633 (1999).

    ADS  Article  Google Scholar 

  28. 28

    Klaers, J. et al. Bose-Einstein condensation of photons in a microscopic optical resonator: towards photonic lattices and coupled cavities. Proc. SPIE 8600, 86000L (2013).

    Article  Google Scholar 

  29. 29

    Reufer, M., Dıaz-Leyva, P., Lynch, I. & Scheffold, F. Temperature-sensitive poly(N-isopropyl-acrylamide) microgel particles: a light scattering study. Eur. Phys. J. E 28, 165–171 (2009).

    Article  Google Scholar 

  30. 30

    Inoue, H. et al. Conformational relaxation dynamics of a poly(N-isopropylacrylamide) aqueous solution measured using the laser temperature jump transient grating method. Phys. Chem. Chem. Phys. 14, 5620–5627 (2012).

    Article  Google Scholar 

  31. 31

    Kirton, P. & Keeling, J. Nonequilibrium model of photon condensation. Phys. Rev. Lett. 111, 100404 (2013).

    ADS  Article  Google Scholar 

  32. 32

    Marelic, J. et al. Spatiotemporal coherence of non-equilibrium multimode photon condensates. New J. Phys. 18, 103012 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Klaers, J. et al. Bose–Einstein condensation of paraxial light. Appl. Phys. B 105, 17 (2011).

    ADS  Article  Google Scholar 

  34. 34

    Pethick, C. J. & Smith, H. Bose–Einstein Condensation in Dilute Gases (Cambridge Univ. Press, 2008).

    Google Scholar 

Download references


We thank U. Fischer for valuable discussions on the thermal model. Financial support by the Deutsche Forschungsgemeinschaft (Collaborative Research Centre 185) and the European Research Council (Interacting Photon Bose–Einstein Condensates in Variable Potentials—INPEC) is acknowledged.

Author information




D.D., C.K., T.D., J.S., F.V. and J.K. analysed the data. D.D., M.W. and J.K. conceived and designed the experiments. D.D., C.K., T.D., J.S. and J.K. contributed materials/analysis tools. D.D., C.K., J.S. and J.K. performed the experiments. D.D., F.V., M.W. and J.K. wrote the paper.

Corresponding authors

Correspondence to Martin Weitz or Jan Klaers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 318 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dung, D., Kurtscheid, C., Damm, T. et al. Variable potentials for thermalized light and coupled condensates. Nature Photon 11, 565–569 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing