Letter | Published:

Variable potentials for thermalized light and coupled condensates

Nature Photonics volume 11, pages 565569 (2017) | Download Citation

Abstract

Quantum gases in lattice potentials have been a powerful platform to simulate phenomena from solid-state physics, such as the Mott insulator transition1. In contrast to ultracold atoms, photon-based platforms, such as photonic crystals, coupled waveguides or lasers, usually do not operate in thermal equilibrium2,3,4,5. Advances towards photonic simulators of solid-state equilibrium effects include polariton lattice experiments6,7,8,9,10, and the demonstration of a photon condensate11,12. Here, we demonstrate a technique to create variable micropotentials for light using thermo-optic imprinting of a dye–polymer solution within an ultrahigh-finesse microcavity. We study the properties of single- and double-well potentials, and find the quality of structuring sufficient for thermalization and Bose–Einstein condensation of light. The investigation of effective photon–photon interactions along with the observed tunnel coupling between sites makes the system a promising candidate to directly populate entangled photonic many-body states. The demonstrated scalability suggests that thermo-optic imprinting provides a new approach for variable microstructuring in photonics.

  • Subscribe to Nature Photonics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , & Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  2. 2.

    , , & Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

  3. 3.

    , , & Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

  4. 4.

    , , & Observing geometric frustration with thousands of coupled lasers. Phys. Rev. Lett. 110, 184102 (2013).

  5. 5.

    & Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

  6. 6.

    et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (1997).

  7. 7.

    , , , & Coherent oscillations in an exciton–polariton Josephson junction. Phys. Rev. Lett. 105, 120403 (2010).

  8. 8.

    et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

  9. 9.

    et al. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nat. Phys. 9, 275–279 (2012).

  10. 10.

    et al. Optical superfluid phase transitions and trapping of polariton condensates. Phys. Rev. Lett. 110, 186403 (2013).

  11. 11.

    , , & Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

  12. 12.

    & Experimental evidence for inhomogeneous pumping and energy-dependent effects in photon Bose-Einstein condensation. Phys. Rev. A 91, 033813 (2015).

  13. 13.

    , , & Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

  14. 14.

    , , & Quantum phase transitions of light. Nat. Phys. 2, 856 (2006).

  15. 15.

    , & Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

  16. 16.

    , , & Phase transitions of light in cavity QED lattices. Phys. Rev. Lett. 109, 053601 (2012).

  17. 17.

    & Fractional quantum Hall states of photons in an array of dissipative coupled cavities. Phys. Rev. Lett. 108, 206809 (2012).

  18. 18.

    , , & Effects of dissipation on the superfluid–Mott-insulator transition of photons. Phys. Rev. A 91, 033609 (2015).

  19. 19.

    , & Spectral engineering of coupled open-access microcavities. Laser Photon. Rev. 10, 257–263 (2016).

  20. 20.

    et al. Zero-dimensional organic exciton–polaritons in tunable coupled Gaussian defect microcavities at room temperature. ACS Photon. 3, 1542–1545 (2016).

  21. 21.

    , & Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 93, 3311–3313 (1989).

  22. 22.

    , , , & Infrared laser-induced photo-thermal phase transition of an aqueous poly(N-isopropylacrylamide) solution in the micrometer dimension. Bull. Chem. Soc. Jpn 69, 59–66 (1996).

  23. 23.

    et al. Thermalization kinetics of light: from laser dynamics to equilibrium condensation of photons. Phys. Rev. A 92, 011602 (2015).

  24. 24.

    et al. Direct observation of sub-Poissonian number statistics in a degenerate Bose gas. Phys. Rev. Lett. 95, 260403 (2005).

  25. 25.

    & Interactions in dye-microcavity photon condensates and the prospects for their observation. Phys. Rev. A 89, 033844 (2014).

  26. 26.

    , , & Interaction effects on number fluctuations in a Bose-Einstein condensate of light. Phys. Rev. Lett. 113, 135301 (2014).

  27. 27.

    , , & Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 620–633 (1999).

  28. 28.

    et al. Bose-Einstein condensation of photons in a microscopic optical resonator: towards photonic lattices and coupled cavities. Proc. SPIE 8600, 86000L (2013).

  29. 29.

    , , & Temperature-sensitive poly(N-isopropyl-acrylamide) microgel particles: a light scattering study. Eur. Phys. J. E 28, 165–171 (2009).

  30. 30.

    et al. Conformational relaxation dynamics of a poly(N-isopropylacrylamide) aqueous solution measured using the laser temperature jump transient grating method. Phys. Chem. Chem. Phys. 14, 5620–5627 (2012).

  31. 31.

    & Nonequilibrium model of photon condensation. Phys. Rev. Lett. 111, 100404 (2013).

  32. 32.

    et al. Spatiotemporal coherence of non-equilibrium multimode photon condensates. New J. Phys. 18, 103012 (2016).

  33. 33.

    et al. Bose–Einstein condensation of paraxial light. Appl. Phys. B 105, 17 (2011).

  34. 34.

    & Bose–Einstein Condensation in Dilute Gases (Cambridge Univ. Press, 2008).

Download references

Acknowledgements

We thank U. Fischer for valuable discussions on the thermal model. Financial support by the Deutsche Forschungsgemeinschaft (Collaborative Research Centre 185) and the European Research Council (Interacting Photon Bose–Einstein Condensates in Variable Potentials—INPEC) is acknowledged.

Author information

Author notes

    • Jan Klaers

    Present address: Institute for Quantum Electronics, ETH Zürich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland.

Affiliations

  1. Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany

    • David Dung
    • , Christian Kurtscheid
    • , Tobias Damm
    • , Julian Schmitt
    • , Frank Vewinger
    • , Martin Weitz
    •  & Jan Klaers

Authors

  1. Search for David Dung in:

  2. Search for Christian Kurtscheid in:

  3. Search for Tobias Damm in:

  4. Search for Julian Schmitt in:

  5. Search for Frank Vewinger in:

  6. Search for Martin Weitz in:

  7. Search for Jan Klaers in:

Contributions

D.D., C.K., T.D., J.S., F.V. and J.K. analysed the data. D.D., M.W. and J.K. conceived and designed the experiments. D.D., C.K., T.D., J.S. and J.K. contributed materials/analysis tools. D.D., C.K., J.S. and J.K. performed the experiments. D.D., F.V., M.W. and J.K. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Martin Weitz or Jan Klaers.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2017.139

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.