Review Article | Published:

Phase-change materials for non-volatile photonic applications

Nature Photonics volume 11, pages 465476 (2017) | Download Citation

Abstract

Phase-change materials (PCMs) provide a unique combination of properties. On transformation from the amorphous to crystalline state, their optical properties change drastically. Short optical or electrical pulses can be utilized to switch between these states, making PCMs attractive for photonic applications. We review recent developments in PCMs and evaluate the potential for all-photonic memories. Towards this goal, the progress and existing challenges to realize waveguides with stepwise adjustable transmission are presented. Colour-rendering and nanopixel displays form another interesting application. Finally, nanophotonic applications based on plasmonic nanostructures are introduced. They provide reconfigurable, non-volatile functionality enabling manipulation and control of light. Requirements and perspectives to successfully implement PCMs in emerging areas of photonics are discussed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

  2. 2.

    Is Keck's law coming to an end? IEEE Spectrum (2016).

  3. 3.

    & Topics around phase-change behavior of some salt hydrates as latent-heat storage materials. Denki Kagaku 53, 550–555 (1985).

  4. 4.

    , , & Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 18, 254–257 (1971).

  5. 5.

    & Breakthroughs in photonics 2014: phase change materials for photonics. IEEE Photonics J. 7, 0700305 (2015).

  6. 6.

    et al. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012).

  7. 7.

    et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 38, 368–370 (2013).

  8. 8.

    et al. Evolution of metallicity in vanadium dioxide by creation of oxygen vacancies. Phys. Rev. Appl. 7, 034008 (2017).

  9. 9.

    et al. Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials. Adv. Opt. Mater. 4, 1060–1066 (2016).

  10. 10.

    et al. Correlated perovskites as a new platform for super-broadband-tunable photonics. Adv. Mater. 28, 9117–9125 (2016).

  11. 11.

    & Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

  12. 12.

    , , , & The characteristics and the potential of super resolution near-field structure. Jpn. J. Appl. Phys. 39, 957–961 (2000).

  13. 13.

    , , , & Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452–459 (2004).

  14. 14.

    et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

  15. 15.

    , & Crystallization properties of ultrathin phase change films. J. Appl. Phys. 103, 114310 (2008).

  16. 16.

    et al. High performance PRAM cell scalable to sub-20 nm technology with below 4F2 cell size, extendable to DRAM applications. In 2010 IEEE Symposium on VLSI Technology 203–204 (IEEE, 2010).

  17. 17.

    et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

  18. 18.

    et al. Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108 (2009).

  19. 19.

    , & Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005).

  20. 20.

    Phase-change materials: towards a universal memory? Nat. Mater. 4, 265–266 (2005).

  21. 21.

    et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008).

  22. 22.

    et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 14, 991–995 (2015).

  23. 23.

    , & Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

  24. 24.

    , , , & Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotech. 6, 726–732 (2011).

  25. 25.

    , , & Optomechanical light storage in a silica microresonator. Phys. Rev. A 87, 023812 (2013).

  26. 26.

    & Photonic non-volatile memories using phase change materials. Appl. Phys. Lett. 101, 171101 (2012).

  27. 27.

    , , , & On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377 (2014).

  28. 28.

    et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

  29. 29.

    et al. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011).

  30. 30.

    et al. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths. Appl. Phys. Lett. 104, 091108 (2014).

  31. 31.

    in Reconfigurable Computing: Architectures and Applications LNCS 3985 (eds Bertels, K., Cardoso, J. M. P. & Vassiliadis, S.) 243–254 (Springer, 2006).

  32. 32.

    et al. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119 (2013).

  33. 33.

    , & Proposal of a small self-holding 2×2 optical switch using phase-change material. IEICE Electron. Express 5, 442–445 (2008).

  34. 34.

    , , , & Electro-optical phase-change 2 × 2 switching using three- and four-waveguide directional couplers. Appl. Opt. 54, 5897–5902 (2015).

  35. 35.

    et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

  36. 36.

    , , , & Active control of surface plasmon waveguides with a phase change material. ACS Photon. 2, 669–674 (2015).

  37. 37.

    et al. Comparison of optical and electrical transient response during nanosecond laser pulse-induced phase transition of Ge2Sb2Te5 thin films. Chem. Phys. Lett. 507, 203–207 (2011).

  38. 38.

    , , & Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth. J. Appl. Phys. 78, 4906–4917 (1995).

  39. 39.

    , & Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007).

  40. 40.

    Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969).

  41. 41.

    , , & Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013).

  42. 42.

    Optical Properties of Thin Solid Films (Dover Publications, 1991).

  43. 43.

    , & An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

  44. 44.

    , , & Color depth modulation and resolution in phase-change material nanodisplays. Adv. Mater. 28, 4720–4726 (2016).

  45. 45.

    , , & Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses. ACS Photon. 2, 178–182 (2015).

  46. 46.

    & Colour performance and stack optimisation in phase change material based nano-displays. Proc. SPIE 9520, 95200M (2015).

  47. 47.

    & Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

  48. 48.

    et al. Chalcogenide glasses in active plasmonics. Phys. Status Solidi Rapid Res. Lett. 4, 274–276 (2010).

  49. 49.

    et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105 (2010).

  50. 50.

    et al. Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition. Phys. Rev. Lett. 111, 037401 (2013).

  51. 51.

    et al. Imprinting the optical near field of microstructures with nanometer resolution. Small 5, 1825–1829 (2009).

  52. 52.

    et al. Ultraviolet optical near-fields of microspheres imprinted in phase change films. Appl. Phys. Lett. 96, 193108 (2010).

  53. 53.

    et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

  54. 54.

    Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

  55. 55.

    et al. Memory metamaterials. Science 325, 1518–1521 (2009).

  56. 56.

    et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

  57. 57.

    , , , & An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

  58. 58.

    et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21, 13691–13698 (2013).

  59. 59.

    et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).

  60. 60.

    et al. Amorphous InSb: longer bonds yet higher density. J. Appl. Phys. 108, 023506 (2010).

  61. 61.

    et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photon. 1, 833–839 (2014).

  62. 62.

    , , , & Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep. 4, 3955 (2014).

  63. 63.

    , , & Electrochemically programmable plasmonic antennas. ACS Nano 10, 6716–6724 (2016).

  64. 64.

    , , & All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett. 11, 2457–2463 (2011).

  65. 65.

    et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

  66. 66.

    et al. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express 20, 1903–1911 (2012).

  67. 67.

    & Non-volatile memory technologies: emerging concepts and new materials. Mater. Sci. Semicond. Process. 7, 349–355 (2004).

  68. 68.

    et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010).

  69. 69.

    et al. A four-terminal, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation. IEEE Electron Dev. Lett. 34, 1313–1315 (2013)

  70. 70.

    et al. Low-loss latching microwave switch using thermally pulsed non-volatile chalcogenide phase change materials. Appl. Phys. Lett. 105, 013501 (2014).

  71. 71.

    , & Study of tunable negative index metamaterials based on phase-change materials. J. Opt. Soc. Am. B 30, 439–444 (2013).

  72. 72.

    , , & Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J. Opt. Soc. Am. B 30, 1580–1585 (2013).

  73. 73.

    , , , & Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express 3, 1101–1110 (2013).

  74. 74.

    , , , & Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt. Express 21, 27841–27851 (2013).

  75. 75.

    et al. Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep. 5, 8660 (2015).

  76. 76.

    et al. Active chiral plasmonics. Nano Lett. 15, 4255–4260 (2015).

  77. 77.

    et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015).

  78. 78.

    , , & Ultrafast beam steering using gradient Au-Ge2Sb2Te5-Au plasmonic resonators. Opt. Express 23, 18029–18039 (2015).

  79. 79.

    , & Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism. Sci. Rep. 5, 14666 (2015).

  80. 80.

    & All-dielectric metamaterials. Nat. Nanotech. 11, 23–36 (2016).

  81. 81.

    Obtaining optical properties on demand. Science 348, 973–974 (2015).

  82. 82.

    , , & All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett. 109, 051103 (2016).

  83. 83.

    et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

  84. 84.

    & Surface phonon–polaritons: to scatter or not to scatter. Nat. Mater. 15, 821–822 (2016).

  85. 85.

    et al. A map for phase-change materials. Nat. Mater. 7, 972–977 (2008).

  86. 86.

    The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

  87. 87.

    Effective coordination numbers (ECoN) and mean Active fictive ionic radii (MEFIR). Z. Kristallogr. Cryst. Mater. 150, 23–52 (1979).

  88. 88.

    et al. Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015).

  89. 89.

    & Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).

  90. 90.

    , , , & Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279–283 (2012).

  91. 91.

    et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).

  92. 92.

    & Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

  93. 93.

    et al. Plasmonics — a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

  94. 94.

    , & Metamaterials and negative refractive index. Science 305, 788–792 (2004).

  95. 95.

    & Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523–530 (2011).

  96. 96.

    Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

  97. 97.

    & Photonic metamaterials. Laser Phys. Lett. 5, 411–420 (2008).

  98. 98.

    & Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  99. 99.

    & Active plasmonics: current status. Laser Photon. Rev. 4, 562–567 (2010).

  100. 100.

    , , , & Characterization of the tunable response of highly strained compliant optical metamaterials. Phil. Trans. R. Soc. A 369, 3447–3455 (2011).

  101. 101.

    et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012).

  102. 102.

    et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

  103. 103.

    et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

  104. 104.

    et al. Voltage switching of a VO2 memory metasurface using ionic gel. Appl. Phys. Lett. 105, 041117 (2014).

Download references

Acknowledgements

M.W. acknowledges funding through SFB 917 (Nanoswitches) and an European Research Council Advanced Grant 340698 ('Disorder control') as well as help from J.-Y. Raty, F. Lange and S. Jakobs in preparing Figs 1,2,3. T.T. acknowledges funding through SFB 917 (Nanoswitches) and the German Federal Ministry of Education and Research (funding program Photonics Research Germany, contract no. 13N14151).

Author information

Affiliations

  1. RWTH Aachen University, I. Physikalisches Institut (IA), 52056 Aachen, Germany

    • M. Wuttig
    •  & T. Taubner
  2. JARA-FIT Institute Green IT, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52056 Aachen, Germany

    • M. Wuttig
  3. JARA-HPC, RWTH Aachen University, 52056 Aachen, Germany

    • M. Wuttig
  4. Department of Materials, University of Oxford, Oxford OX1 3PH, UK

    • H. Bhaskaran
  5. JARA-FIT, RWTH Aachen University, 52056 Aachen, Germany

    • T. Taubner

Authors

  1. Search for M. Wuttig in:

  2. Search for H. Bhaskaran in:

  3. Search for T. Taubner in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. Wuttig.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2017.126

Further reading