Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient metallic spintronic emitters of ultrabroadband terahertz radiation


Terahertz electromagnetic radiation is extremely useful for numerous applications, including imaging and spectroscopy. It is thus highly desirable to have an efficient table-top emitter covering the 1–30 THz window that is driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source that relies on three tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photoinduced spin currents, the inverse spin-Hall effect and a broadband Fabry–Pérot resonance. Guided by an analytical model, this spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1–30 THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz field amplitude, flexibility, scalability and cost.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Metallic spintronic terahertz emitter.
Figure 2: Impact of the NM material.
Figure 3: Impact of stack geometry on emitter performance.
Figure 4: Spintronic emitter performance and spectroscopic application.


  1. 1

    Ferguson, B. & Zhang, X. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

    ADS  Article  Google Scholar 

  2. 2

    Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    ADS  Article  Google Scholar 

  3. 3

    Ulbricht, R., Hendry, E., Shan, J., Heinz, T. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Kampfrath, T., Tanaka, K. & Nelson, K. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photon. 7, 680–690 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Chan, W., Deibel, J. & Mittleman, D. Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007).

    ADS  Article  Google Scholar 

  6. 6

    Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photon. 7, 620–625 (2013).

    ADS  Article  Google Scholar 

  7. 7

    Sano, Y. et al. Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy. Sci. Rep. 4, 6046 (2014).

    Article  Google Scholar 

  8. 8

    Zeitler, J. et al. Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review. J. Pharm. Pharmacol. 59, 209–223 (2007).

    Article  Google Scholar 

  9. 9

    Reimann, K. Table-top sources of ultrashort THz pulses. Rep. Prog. Phys. 70, 1597–1632 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Blanchard, F. et al. Generation of intense terahertz radiation via optical methods. IEEE J. Sel. Top. Quantum Electron. 17, 5–16 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Rice, A. et al. Terahertz optical rectification from 〈110〉 zinc-blende crystals. Appl. Phys. Lett. 64, 1324–1326 (1994).

    ADS  Article  Google Scholar 

  12. 12

    Kaindl, R., Eickemeyer, F., Woerner, M. & Elsaesser, T. Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory. Appl. Phys. Lett. 75, 1060–1062 (1999).

    ADS  Article  Google Scholar 

  13. 13

    Huber, R., Brodschelm, A., Tauser, F. & Leitenstorfer, A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191–3193 (2000).

    ADS  Article  Google Scholar 

  14. 14

    Zheng, X., Sinyukov, A. & Hayden, L. M. Broadband and gap-free response of a terahertz system based on a poled polymer emitter–sensor pair. Appl. Phys. Lett. 87, 081115 (2005).

    ADS  Article  Google Scholar 

  15. 15

    Zheng, X., McLaughlin, C. V., Cunningham, P. & Hayden, L. M. Organic broadband terahertz sources and sensors. J. Nanoelectron. Optoelectron. 2, 58–76 (2007).

    Article  Google Scholar 

  16. 16

    Brunner, F. et al. A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection. Opt. Express 16, 16496–16508 (2008).

    ADS  Article  Google Scholar 

  17. 17

    Katayama, I. et al. Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals. Appl. Phys. Lett. 97, 021105 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Shan, J. & Heinz, T. F. in Ultrafast Dynamical Processes in Semiconductors (ed. Tsen, K.-T.) 1–56 (Springer, 2004).

    Book  Google Scholar 

  19. 19

    Apostolopoulos, V. & Barnes, M. THz emitters based on the photo-Dember effect. J. Phys. D 47, 374002 (2014).

    Article  Google Scholar 

  20. 20

    Klatt, G. et al. Terahertz emission from lateral photo-Dember currents. Opt. Express 18, 4939–4947 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Shen, Y., Upadhya, P., Linfield, E., Beere, H. & Davies, A. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Appl. Phys. Lett. 83, 3117–3119 (2003).

    ADS  Article  Google Scholar 

  22. 22

    Winnerl, S. Scalable microstructured photoconductive terahertz emitters. J. Infrared Millim. Terahertz Waves 33, 431–454 (2012).

    Article  Google Scholar 

  23. 23

    Hale, P. et al. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas. Opt. Express 22, 26358–26364 (2014).

    ADS  Article  Google Scholar 

  24. 24

    Berry, C., Wang, N., Hashemi, M., Unlu, M. & Jarrahi, M. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nature Commun. 4, 1622 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Thomson, M. D., Kreß, M., Löffler, T. & Roskos, H. G. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser Photon. Rev. 1, 349–368 (2007).

    ADS  Article  Google Scholar 

  26. 26

    Kim, K., Glownia, J., Taylor, A. J. & Rodriguez, G. High-power broadband terahertz generation via two-color photoionization in gases. IEEE J. Quantum Electron. 48, 797–805 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Lu, X. & Zhang, X. C. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics. Front. Optoelectron. 7, 121–155 (2013).

    Article  Google Scholar 

  28. 28

    Bartel, T., Gaal, P., Reimann, K., Woerner, M. & Elsaesser, T. Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 30, 2805–2807 (2005).

    ADS  Article  Google Scholar 

  29. 29

    Buccheri, F. & Zhang, X. C. Terahertz emission from laser-induced microplasma in ambient air. Optica 2, 366–369 (2015).

    ADS  Article  Google Scholar 

  30. 30

    Ramanandan, G., Ramakrishnan, G., Kumar, N., Adam, A. & Planken, P. Emission of terahertz pulses from nanostructured metal surfaces. J. Phys. D 47, 374003 (2014).

    Article  Google Scholar 

  31. 31

    Zhang, L. et al. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures. Sci. Rep. 5, 12536 (2015).

    ADS  Article  Google Scholar 

  32. 32

    Zhukov, V., Chulkov, E. & Echenique, P. Lifetimes and inelastic mean free path of low-energy excited electrons in Fe, Ni, Pt, and Au: ab initio GW + T calculations. Phys. Rev. B 73, 125105 (2006).

    ADS  Article  Google Scholar 

  33. 33

    Laman, N. & Grischkowsky, D. Terahertz conductivity of thin metal films. Appl. Phys. Lett. 93, 051105 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Ramakrishnan, G. & Planken, P. Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films. Opt. Lett. 36, 2572–2574 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Polyushkin, D., Hendry, E., Stone, E. & Barnes, W. THz generation from plasmonic nanoparticle arrays. Nano Lett. 11, 4718–4724 (2011).

    ADS  Article  Google Scholar 

  36. 36

    Kadlec, F., Kuzel, P. & Coutaz, J. Study of terahertz radiation generated by optical rectification on thin gold films. Opt. Lett. 30, 1402–1404 (2005).

    ADS  Article  Google Scholar 

  37. 37

    Welsh, G. H., Hunt, N. T. & Wynne, K. Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating. Phys. Rev. Lett. 98, 026803 (2007).

    ADS  Article  Google Scholar 

  38. 38

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    ADS  Article  Google Scholar 

  39. 39

    Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    ADS  Article  Google Scholar 

  40. 40

    Sinova, J. et al. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    ADS  Article  Google Scholar 

  41. 41

    Wei, D. et al. Spin Hall voltages from a.c. and d.c. spin currents. Nature Commun. 5, 3768 (2014).

    ADS  Article  Google Scholar 

  42. 42

    Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    ADS  Article  Google Scholar 

  43. 43

    Melnikov, A. et al. Ultrafast transport of laser-excited spin polarized carriers in Au/Fe/MgO(001). Phys. Rev. Lett. 107, 076601 (2011).

    ADS  Article  Google Scholar 

  44. 44

    Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nanotech. 8, 256–260 (2013).

    ADS  Article  Google Scholar 

  45. 45

    Héroux, J. B., Ino, Y., Kuwata-Gonokami, M., Hashimoto, Y. & Katsumoto, S. Terahertz radiation emission from GaMnAs. Appl. Phys. Lett. 88, 221110 (2006).

    ADS  Article  Google Scholar 

  46. 46

    Jin, Z. et al. Accessing the fundamentals of magnetotransport in metals with terahertz probes. Nature Phys. 11, 761–766 (2015).

    ADS  Article  Google Scholar 

  47. 47

    Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. & Knox, W. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett. 74, 1516–1518 (1999).

    ADS  Article  Google Scholar 

  48. 48

    Kontani, H., Tanaka, T., Hirashima, D., Yamada, K. & Inoue, J. Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).

    ADS  Article  Google Scholar 

  49. 49

    D'Angelo, F., Mics, Z., Bonn, M. & Turchinovich, D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt. Express 22, 12475–12485 (2014).

    ADS  Article  Google Scholar 

  50. 50

    Blanchard, F. et al. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Opt. Express 15, 13212–13220 (2007).

    ADS  Article  Google Scholar 

  51. 51

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    ADS  Article  Google Scholar 

  52. 52

    Vicario, C. et al. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient. Nature Photon. 7, 720–723 (2013).

    ADS  Article  Google Scholar 

  53. 53

    Boulle, O., Malinowski, G. & Kläui, M. Current-induced domain wall motion in nanoscale ferromagnetic elements. Mater. Sci. Eng. R 72, 159–187 (2011).

    Article  Google Scholar 

  54. 54

    Yeh, P. Optical Waves in Layered Media (Wiley, 2005).

    Google Scholar 

  55. 55

    Liang, X., Xu, X., Zheng, R., Lum, Z. & Qiu, J. Optical constant of CoFeB thin film measured with the interference enhancement method. Appl. Opt. 54, 1557–1563 (2015).

    ADS  Article  Google Scholar 

  56. 56

    Ordal, M., Bell, R., Alexander, R. Jr, Newquist, L. & Querry, M. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Appl. Opt. 27, 1203–1209 (1988).

    ADS  Article  Google Scholar 

  57. 57

    Nuss, M. C. & Orenstein, J. in Millimeter and Submillimeter Wave Spectroscopy of Solids (ed. Gruener, G.) Ch. 2 (Springer, 1998).

    Google Scholar 

  58. 58

    Kampfrath, T., Nötzold, J. & Wolf, M. Sampling of broadband terahertz pulses with thick electrooptic crystals. Appl. Phys. Lett. 90, 231113 (2007).

    ADS  Article  Google Scholar 

  59. 59

    Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999).

    ADS  Article  Google Scholar 

  60. 60

    Dietze, D., Unterrainer, K. & Darmo, J. Dynamically phase-matched terahertz generation. Opt. Lett. 37, 1047–1049 (2012).

    ADS  Article  Google Scholar 

  61. 61

    Zheng, X., McLaughlin, C., Leahy-Hoppa, M., Sinyukov, A. & Hayden, L. Modeling a broadband terahertz system based on an electro-optic polymer emitter–sensor pair. J. Opt. Soc. Am. B 23, 1338–1347 (2006).

    ADS  Article  Google Scholar 

  62. 62

    Mills, D. L. Nonlinear Optics: Basic Concepts (Springer, 1991).

    Book  Google Scholar 

  63. 63

    Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    ADS  Article  Google Scholar 

  64. 64

    Freimuth, F., Blügel, S. & Mokrousov, Y. Anisotropic spin Hall effect from first principles. Phys. Rev. Lett. 105, 246602 (2010).

    ADS  Article  Google Scholar 

Download references


The authors thank S. Winnerl for providing a TeraSED3 emitter and for stimulating discussions. The authors acknowledge the German Science Foundation for funding through SPP 1538/SpinCaT (Berlin, Greifswald, Jülich and Mainz groups) and through SFB TRR 173/Spin+X (Mainz group). The European Union is acknowledged for funding through ERC H2020 CoG project TERAMAG/grant no. 681917 (T.K.), FP7 project CRONOS/grant no. 280879 (T.K. and M.W.), FP7 Marie Curie ITN WALL project/grant no. 608031 (J.S., G.J. and M.K.), Career Integration Grant LIGHTER/grant no. 334324 (D.T.) and FP7 project FemtoSpin/grant no. 281043 (P.M. and P.M.O.). The authors are grateful for support from the Max Planck Society (T.K. and D.T.), the Swedish Research Council, the Röntgen-Ångström Cluster, and the K. and A. Wallenberg Foundation (P.M. and P.M.O.), the Samsung SGMI programme, the EFRE Program of the state of Rhineland Palatinate, TT-DINEMA, the Excellence Graduate School MAINZ (GSC 266) and the state research centre CINEMA (Mainz group). F.F. and Y.M. acknowledge Jülich Supercomputing Centre for computing time.

Author information




T.K. and T.S. conceived the experiments. T.K. and I.R. carried out preliminary measurements. S.J., U.M., A.K., J.He., E.B., M.J., G.J., M.M. and M.K. fabricated the spintronic emitters and optimized the fabrication process. L.B., T.S. and T.K. built the terahertz emission set-up. J.Ha. and L.M.H. fabricated the LAPC electrooptic detectors. T.S. performed the terahertz experiments and optical sample characterization. T.S. and T.K. analysed experimental data with contributions from D.T. and M.K. T.K. and T.S. developed the analytical terahertz-emitter model with contributions from F.F. and Y.M. F.F. and Y.M. calculated spin-Hall conductivities. P.M. and P.M.O. conducted calculations of the ultrafast spin transport. T.K., T.S., D.T., M.W. and M.K. co-wrote the paper. All authors contributed to discussing the results and writing the paper.

Corresponding author

Correspondence to T. Kampfrath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 683 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seifert, T., Jaiswal, S., Martens, U. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photon 10, 483–488 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing