Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Collective strong coupling of X-rays and nuclei in a nuclear optical lattice

Abstract

The advent of third-generation synchrotron radiation sources and X-ray free-electron lasers has opened up the opportunity to perform quantum optical experiments with high-energy X-rays. The prime atomic system for experiments in this energy range is the strongly nuclear resonant 57Fe Mössbauer isotope. Experiments have included measurements of the collective Lamb shift1, observation of electromagnetically induced transparency2, subluminal propagation of X-rays3,6 and spontaneously generated coherences4,5,7. In these experiments, however, the nuclei were only weakly coupled to the light field. Collective strong coupling of nuclei and X-rays, which is desirable for many quantum optical applications, has eluded researchers so far. Here, we observe collective strong coupling between X-rays and matter excitations in a periodic array of alternating 57Fe and 56Fe layers. Our experiment extends the range of methods for X-ray quantum optics and paves the way for the observation and exploitation of strong-coupling-related phenomena at X-ray energies.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Angular-dependent dispersion relation.
Figure 3: Dispersion relation of an infinite array of 57Fe nuclei arranged in a bichromatic lattice.
Figure 4: Calculated multilayer reflectivity.
Figure 5: Measured energy spectra of the multilayer reflectivity.

References

  1. Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S. & Rüffer, R. Collective Lamb shift in single photon superradiance. Science 328, 1248 (2010).

    ADS  Article  Google Scholar 

  2. Röhlsberger, R., Wille, H., Schlage, K. & Sahoo, B. Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2011).

    ADS  Article  Google Scholar 

  3. Heeg, K. P. et al. Tunable subluminal propagation of narrow-band X-ray pulses. Phys. Rev. Lett. 114, 203601 (2015).

    ADS  Article  Google Scholar 

  4. Heeg, K. P. et al. Vacuum-assisted generation and control of atomic coherences at X-ray energies. Phys. Rev. Lett. 111, 073601 (2013).

    ADS  Article  Google Scholar 

  5. Heeg, K. P. & Evers, J. Quantum optics with Mössbauer nuclei in a cavity. Phys. Rev. A 88, 043828 (2013).

    ADS  Article  Google Scholar 

  6. Vagizov, F., Antonov, V., Radeonychev, Y., Shakhmuratov, R. N. & Kocharovskaya, O. Coherent control of the waveforms of recoilless γ-ray photons. Nature 508, 80–83 (2014).

    ADS  Article  Google Scholar 

  7. Heeg, K. P. et al. Interferometric phase detection at X-ray energies via Fano resonance control. Phys. Rev. Lett. 114, 207401 (2015).

    ADS  Article  Google Scholar 

  8. Goldberg, D. et al. Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nature Photon. 3, 662–666 (2009).

    ADS  Article  Google Scholar 

  9. Schilke, A., Zimmermann, C., Courteille, P. & Guerin, W. Optical parametric oscillation with distributed feedback in cold atoms. Nature Photon. 6, 101–104 (2012).

    ADS  Article  Google Scholar 

  10. Askitopoulos, A. et al. Bragg polaritons: strong coupling and amplification in an unfolded microcavity. Phys. Rev. Lett. 106, 076401 (2011).

    ADS  Article  Google Scholar 

  11. Kaina, N ., Fink, M. & Lerosey, G. Composite media mixing Bragg and local resonances for highly attenuating and broad bandgaps. Sci. Rep. 3, 3240 (2013).

    ADS  Article  Google Scholar 

  12. Deutsch, I. H., Spreeuw, R. J. C., Rolston, S. L. & Phillips, W. D. Photonic band gaps in optical lattices. Phys. Rev. A 52, 1394–1410 (1995).

    ADS  Article  Google Scholar 

  13. Weidemüller, M., Hemmerich, A., Görlitz, A., Esslinger, T. & Hänsch, T. W. Bragg diffraction in an atomic lattice bound by light. Phys. Rev. Lett. 75, 4583–4586 (1995).

    ADS  Article  Google Scholar 

  14. Ivchenko, E. & Poddubny, A. Resonant diffraction of electromagnetic waves from solids (a review). Phys. Solid State 55, 905–923 (2013).

    ADS  Article  Google Scholar 

  15. Hübner, M. et al. Optical lattices achieved by excitons in periodic quantum well structures. Phys. Rev. Lett. 83, 2841–2844 (1999).

    ADS  Article  Google Scholar 

  16. Deàk, L. et al. Pure nuclear Bragg reflection of a periodic 56Fe/57Fe multilayer. J. Appl. Phys. 85, 1–7 (1999).

    ADS  Article  Google Scholar 

  17. Röhlsberger, R., Witthoff, E., Gerdau, E. & Lüken, E. Observation of nuclear diffraction from multilayers with a 56Fe/57Fe superstructure. J. Appl. Phys. 74, 1933–1937 (1993).

    ADS  Article  Google Scholar 

  18. Chumakov, A. & Smirnov, G. Nuclear-resonance monochromator for synchrotron radiation using a multilayer 57Fe-56Fe structure. Pis'ma Zh. Eksp. Teor. Fiz. 53, 258–262 (1991).

    Google Scholar 

  19. Chumakov, A., Niesen, L., Nagy, D. & Alp, E. Nuclear resonant scattering of synchrotron radiation by multilayer structures. Hyperfine Interact. 123–124, 427–454 (1999).

    Article  Google Scholar 

  20. Chumakov, A. et al. Resonant diffraction of synchrotron radiation by a nuclear multilayer. Phys. Rev. Lett. 71, 2489–2492 (1993).

    ADS  Article  Google Scholar 

  21. Sturhahn, W. & Gerdau, E. Evaluation of time-differential measurements of nuclear-resonance scattering of X-rays. Phys. Rev. B 49, 9285–9294 (1994).

    ADS  Article  Google Scholar 

  22. Röhlsberger, R. Nuclear Condensed Matter Physics with Synchrotron Radiation. Basic Principles, Methodology and Applications No. 208 (Springer Tracts in Modern Physics, Springer, 2004).

    Google Scholar 

  23. Röhlsberger, R. Theory of X-ray grazing incidence reflection in the presence of nuclear resonance excitation. Hyperfine Interact. 123–124, 301–325 (1999).

    Article  Google Scholar 

  24. Parratt, L. G. Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359–369 (1954).

    ADS  Article  Google Scholar 

  25. Rist, S., Vignolo, P. & Morigi, G. Photonic spectrum of bichromatic optical lattices. Phys. Rev. A 79, 053822 (2009).

    ADS  Article  Google Scholar 

  26. Chong, Y. D., Pritchard, D. E. & Soljačić, M. Quantum theory of a resonant photonic crystal. Phys. Rev. B 75, 235124 (2007).

    ADS  Article  Google Scholar 

  27. Ikawa, T. & Cho, K. Fate of the superradiant mode in a resonant Bragg reflector. Phys. Rev. B 66, 085338 (2002).

    ADS  Article  Google Scholar 

  28. Salomon, A., Gordon, R. J., Prior, Y., Seideman, T. & Sukharev, M. Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film. Phys. Rev. Lett. 109, 073002 (2012).

    ADS  Article  Google Scholar 

  29. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    ADS  Article  Google Scholar 

  30. Rüffer, R. & Chumakov, A. Nuclear resonance beamline at ESRF. Hyperfine Interact. 97–98, 589–604 (1996).

    ADS  Article  Google Scholar 

  31. Kozhekin, A. & Kurizki, G. Self-induced transparency in Bragg reflectors: gap solitons near absorption resonances. Phys. Rev. Lett. 74, 5020–5023 (1995).

    ADS  Article  Google Scholar 

  32. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Article  Google Scholar 

  33. Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

    ADS  Article  Google Scholar 

  34. Toellner, T. S. et al. Polarizer/analyzer filter for nuclear resonant scattering of synchrotron radiation. Appl. Phys. Lett. 67, 1993–1995 (1995).

    ADS  Article  Google Scholar 

  35. Marx, B. et al. High-precision X-ray polarimetry. Phys. Rev. Lett. 110, 254801 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Schumacher for discussions and assistance during the experiment, and J. Evers and K. Heeg for discussions. The authors acknowledge support from the Bundesministerium für Bildung und Forschung (project no. 05K13SJ1).

Author information

Authors and Affiliations

Authors

Contributions

R.R. conceived the experiment and coordinated the experimental efforts. K.S.S., R.L., H.B., I.U. and G.G.P. developed the polarimetry set-up. T.G. fabricated the sample. K.S.S., R.L., J.H., L.B., K.S., H.-C.W., H.B., I.U., R.R. and R.R. participated in performing the experiment. J.H. developed the theoretical interpretation and performed the data analysis. J.H. and R.R. wrote the manuscript. All authors participated in discussing the results.

Corresponding author

Correspondence to Ralf Röhlsberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 412 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haber, J., Schulze, K., Schlage, K. et al. Collective strong coupling of X-rays and nuclei in a nuclear optical lattice. Nature Photon 10, 445–449 (2016). https://doi.org/10.1038/nphoton.2016.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing