Near-field dielectric scattering promotes optical absorption by platinum nanoparticles

Abstract

Recent years have seen a surge of interest in tuning the optical properties of metals for a wide range of applications. In contrast to the well-studied plasmonic metals (mainly Au and Ag), which have distinct absorption peaks, tuning the absorption peak of small (<10 nm) Pt nanoparticles in the visible spectral region, but without increasing their size, has been a major challenge. Here we report, for the first time, a new light absorption model to modulate the absorption peak of supported small Pt nanoparticles in the visible spectral region by adjusting their dielectric environment instead of changing their size. In this model, the Pt nanoparticles can absorb the scattered light in the near field of the dielectric surface of a spherical SiO2 support, thereby exhibiting well-defined visible-light absorption peaks and driving photocatalytic redox reactions. This discovery could open a promising new route to using Pt nanoparticles as visible-light photon absorbers for solar energy conversion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical and chemical properties of Pt nanoparticles and supported Pt/SiO2-SA composites.
Figure 2: Theoretical modelling results.
Figure 3: Near-field intensity maps.
Figure 4: Structure and optical properties analysis.
Figure 5: Photoactivity evaluation for selective oxidation and wavelength- and intensity-dependent photoactivity.
Figure 6: Photocatalytic hydrogen production and photocurrent responses.

References

  1. 1

    Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  Google Scholar 

  2. 2

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    Article  Google Scholar 

  4. 4

    Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  Google Scholar 

  5. 5

    Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    ADS  Article  Google Scholar 

  6. 6

    Mie, G. Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys. 25, 377–445 (1908).

    Article  Google Scholar 

  7. 7

    Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    ADS  Article  Google Scholar 

  8. 8

    Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 8, 95–103 (2014).

    ADS  Article  Google Scholar 

  9. 9

    Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).

    Article  Google Scholar 

  10. 10

    Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  Google Scholar 

  11. 11

    Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS  Article  Google Scholar 

  13. 13

    Krenn, J. R. Nanoparticle waveguides: watching energy transfer. Nature Mater. 2, 210–211 (2003).

    ADS  Article  Google Scholar 

  14. 14

    Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Article  Google Scholar 

  15. 15

    Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem. 3, 467–472 (2011).

    ADS  Article  Google Scholar 

  18. 18

    Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005).

    Article  Google Scholar 

  19. 19

    An, C., Peng, S. & Sun, Y. Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst. Adv. Mater. 22, 2570–2574 (2010).

    Article  Google Scholar 

  20. 20

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).

    Google Scholar 

  21. 21

    Peng, S., McMahon, J. M., Schatz, G. C., Gray, S. K. & Sun, Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl Acad. Sci. USA 107, 14530–14534 (2010).

    ADS  Article  Google Scholar 

  22. 22

    Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  Google Scholar 

  23. 23

    El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001).

    Article  Google Scholar 

  24. 24

    Langhammer, C., Yuan, Z., Zorić, I. & Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6, 833–838 (2006).

    ADS  Article  Google Scholar 

  25. 25

    Jensen, T. R. et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846–9853 (1999).

    Article  Google Scholar 

  26. 26

    Cushing, S. K. et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012).

    Article  Google Scholar 

  27. 27

    Gomes Silva, C., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2011).

    Article  Google Scholar 

  28. 28

    Liu, Z., Hou, W., Pavaskar, P., Aykol, M. & Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Tsukamoto, D. et al. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 134, 6309–6315 (2012).

    Article  Google Scholar 

  30. 30

    Awazu, K. et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676–1680 (2008).

    Article  Google Scholar 

  31. 31

    Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011).

    Article  Google Scholar 

  32. 32

    Creighton, J. A. & Eadon, D. G. Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 87, 3881–3891 (1991).

    Article  Google Scholar 

  33. 33

    Chen, J. et al. Optical properties of Pd–Ag and Pt–Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 5, 2058–2062 (2005).

    ADS  Article  Google Scholar 

  34. 34

    Shiraishi, Y. et al. Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catal. 2, 1984–1992 (2012).

    Article  Google Scholar 

  35. 35

    Shiraishi, Y., Sakamoto, H., Sugano, Y., Ichikawa, S. & Hirai, T. Pt–Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light. ACS Nano 7, 9287–9297 (2013).

    Article  Google Scholar 

  36. 36

    Shiraishi, Y., Sakamoto, H., Fujiwara, K., Ichikawa, S. & Hirai, T. Selective photocatalytic oxidation of aniline to nitrosobenzene by Pt nanoparticles supported on TiO2 under visible light irradiation. ACS Catal. 4, 2418–2425 (2014).

    Article  Google Scholar 

  37. 37

    Li, R., Chen, W., Kobayashi, H. & Ma, C. Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chem. 12, 212–215 (2010).

    Article  Google Scholar 

  38. 38

    Zhai, W., Xue, S., Zhu, A., Luo, Y. & Tian, Y. Plasmon-driven selective oxidation of aromatic alcohols to aldehydes in water with recyclable Pt/TiO2 nanocomposites. ChemCatChem 3, 127–130 (2011).

    Article  Google Scholar 

  39. 39

    Bigall, N. C. et al. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. Nano Lett. 8, 4588–4592 (2008).

    ADS  Article  Google Scholar 

  40. 40

    Xiao, F. Layer-by-layer self-assembly construction of highly ordered metal–TiO2 nanotube arrays heterostructures (M/TNTs, M = Au, Ag, Pt) with tunable catalytic activities. J. Phys. Chem. C 116, 16487–16498 (2012).

    Article  Google Scholar 

  41. 41

    De Stefano, L. et al. Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. J. R. Soc. Interface 10, 1–7 (2013).

    Article  Google Scholar 

  42. 42

    Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

    Google Scholar 

  43. 43

    Zhang, Y., Tang, Z.-R., Fu, X. & Xu, Y.-J. Engineering the unique 2D mat of graphene to achieve graphene–TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5, 7426–7435 (2011).

    Article  Google Scholar 

  44. 44

    Weng, B., Wu, J., Zhang, N. & Xu, Y.-J. Observing the role of graphene on boosting the two-electron reduction of oxygen in graphene–WO3 nanorods photocatalysts. Langmuir 30, 5574–5584 (2014).

    Article  Google Scholar 

  45. 45

    Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  Google Scholar 

  46. 46

    Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotech. 8, 247–251 (2013).

    ADS  Article  Google Scholar 

  47. 47

    Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    ADS  Article  Google Scholar 

  48. 48

    Son, S., Hwang, S. H., Kim, C., Yun, J. Y. & Jang, J. Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 4815–4820 (2013).

    Article  Google Scholar 

  49. 49

    Zhang, N., Yang, M.-Q., Tang, Z.-R. & Xu, Y.-J. Toward improving the graphene–semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. ACS Nano 8, 623–633 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (NSFC) (U1463204, 20903023, 21173045), the Award Program for Minjiang Scholar Professorship, the Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Grant (2012J06003), the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (no. 2014A05), the 1st Program of Fujian Province for Top Creative Young Talents and the Program for Returned High-Level Overseas Chinese Scholars of Fujian Province. This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility (contract no. DE-AC02-06CH11357). Y.S. acknowledges start-up fund support from Temple University. J.J.F. acknowledges start-up funds from William Paterson University.

Author information

Affiliations

Authors

Contributions

Y.-J.X. and Y.S. analysed the data, contributed to discussions and wrote the manuscript. N.Z. and C.H. conducted the experiments. J.-J.F., J.C. and S.-K.G. performed theoretical simulations and assisted with revising the manuscript. D.Z. contributed to improving the quality of the figures.

Corresponding authors

Correspondence to Yi-Jun Xu or Yugang Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3463 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Han, C., Xu, Y. et al. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nature Photon 10, 473–482 (2016). https://doi.org/10.1038/nphoton.2016.76

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing