Optomechanically induced stochastic resonance and chaos transfer between optical fields

Article metrics

Abstract

Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Whispering-gallery-mode microtoroid optomechanical resonator.
Figure 2: Optomechanically mediated chaos generation and transfer between optical fields.
Figure 3: Maximal Lyapunov exponents and probe bandwidth.
Figure 4: Optomechanically induced chaos-mediated stochastic resonance in an optomechanical resonator.

References

  1. 1

    Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidman, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

  2. 2

    Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

  3. 3

    Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

  4. 4

    Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

  5. 5

    Park, Y.-S. & Wang, H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Phys. 5, 489–493 (2009).

  6. 6

    Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Optomechanical dark mode. Science 338, 1609–1613 (2012).

  7. 7

    Tomes, M. & Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 102, 113601 (2009).

  8. 8

    Hofer, J., Schliesser, A. & Kippenberg, T. J. Cavity optomechanics with ultrahigh-Q crystalline microresonators. Phys. Rev. A 82, 031804(R) (2010).

  9. 9

    Ding, L. et al. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. 98, 113108 (2011).

  10. 10

    Zhang, M., Luiz, G., Shah, S., Wiederhecker, G. & Lipson, M. Eliminating anchor loss in optomechanical resonators using elastic wave interference. Appl. Phys. Lett. 105, 051904 (2014).

  11. 11

    Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

  12. 12

    Chan, J., Eichenfield, M., Camacho, R. & Painter, O. Optical and mechanical design of a ‘zipper’ photonic crystal optomechanical cavity. Opt. Express 17, 3802–3817 (2009).

  13. 13

    Brooks, D. W. C. et al. Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476–480 (2012).

  14. 14

    Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011).

  15. 15

    Braginsky, V. B. & Manukin, A. B. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, 1977).

  16. 16

    Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nature Nanotech. 7, 509–514 (2012).

  17. 17

    Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

  18. 18

    Mahboob, I., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Phonon lasing in an electromechanical resonator. Phys. Rev. Lett. 110, 127202 (2013).

  19. 19

    Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).

  20. 20

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

  21. 21

    Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

  22. 22

    O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

  23. 23

    Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nature Photon. 9, 151–162 (2015).

  24. 24

    Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photon. 2, 728–732 (2008).

  25. 25

    Redding, B. et al. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging. Proc. Natl Acad. Sci. USA 112, 1304–1309 (2015).

  26. 26

    Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998).

  27. 27

    McDonnell, M. D. & Abbott, D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5, e1000348 (2009).

  28. 28

    Gang, H., Ditzinger, T., Ning, C. Z. & Haken, H. Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993).

  29. 29

    McDonnell, M. D. & Ward, L. M. The benefits of noise in neural systems: bridging theory and experiment. Nature Rev. Neurosci. 12, 415–426 (2011).

  30. 30

    Anishchenko, V. S., Neiman, A. B. & Safanova, M. A. Stochastic resonance in chaotic systems. J. Stat. Phys. 70, 183–196 (1993).

  31. 31

    Mantegna, R. N. & Spagnolo, B. Stochastic resonance in a tunnel diode. Phys. Rev. E 49, R1792–R1795 (1994).

  32. 32

    Rouse, R., Han, S., & Lukens, J. E. Flux amplification using stochastic superconducting quantum interference devices. Appl. Phys. Lett. 66, 108–110 (1995).

  33. 33

    Hänggi, P. Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem. 3, 285–290 (2002).

  34. 34

    Badzey, R. L. & Mohanty, P. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature 437, 995–998 (2005).

  35. 35

    McNamara, B., Wiesenfeld, K. & Roy, R. Observation of stochastic resonance in a ring laser. Phys. Rev. Lett. 60, 2626–2629 (1988).

  36. 36

    Gammaitoni, L., Marchesoni, F., Menichella-Saetta, E. & Santucci, S. Stochastic resonance in bistable systems. Phy. Rev. Lett. 62, 349–352 (1989).

  37. 37

    Abbaspour, H., Trebaol, S., Portella-Oberli, M. & Deveaud, B. Stochastic resonance in collective exciton–polariton excitations inside a GaAs microcavity. Phys. Rev. Lett. 113, 057401 (2014).

  38. 38

    Liu, Z. & Lai, Y.-C. Coherence resonance in coupled chaotic oscillators. Phys. Rev. Lett. 86, 4737–4740 (2001).

  39. 39

    Karsaklian Dal Bosco, A., Wolfersberger, D. & Sciamanna, M. Delay-induced deterministic resonance of chaotic dynamics. Euro. Phys. Lett. 101, 24001 (2013).

  40. 40

    Masoller, C. Noise-induced resonance in delayed feedback systems. Phys. Rev. Lett. 88, 034102 (2002).

  41. 41

    Arteaga, M. A. et al. Experimental evidence of coherence resonance in a time-delayed bistable system. Phys. Rev. Lett. 99, 023903 (2007).

  42. 42

    Pikovsky, A. S. & Kurths, J. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997).

  43. 43

    Neiman, A., Saparin, P. I. & Stone, L. Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems. Phys. Rev. E 56, 270–273 (1997).

  44. 44

    Lindner, B. & Schimansky-Geier, L. Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance. Phys. Rev. E 60, 7270–7276 (1999).

  45. 45

    Postnov, D. E., Han, S. K., Yim, T. G. & Sosnovtseva, O. V. Experimental observation of coherence resonance in cascaded excitable systems. Phys. Rev. E 59, R3791–R3794 (1999).

  46. 46

    Ilchenko, V. S. & Gorodetskii, M. L. Thermal nonlinear effects in optical whispering gallery microresonators. Laser Phys. 2, 1004–1009 (1992).

  47. 47

    Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

  48. 48

    Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).

  49. 49

    Bakemeier, L., Alvermann, A. & Fehske, H. Route to chaos in optomechanics. Phys. Rev. Lett. 114, 013601 (2015).

  50. 50

    Marquardt, F. & Girvin, S. M. Trend: optomechanics. Physics 2, 40 (2009).

  51. 51

    Lemarchand, A., Gorecki, J., Gorecki, A. & Nowakows, B. Temperature-driven coherence resonance and stochastic resonance in a thermochemical system. Phys. Rev. E 89, 022916 (2014).

  52. 52

    Dunn, T., Wenzler, J. & Mohanty, P. Anharmonic modal coupling in a bulk micromechanical resonator. Appl. Phys. Lett. 97, 123109 (2010).

  53. 53

    Gaidarzhy, A., Dorignac, J., Zolfagharkhani, G., Imboden, M. & Mohanty, P. Energy measurement in nonlinearly coupled nanomechanical modes. Appl. Phys. Lett. 98, 264106 (2011).

Download references

Acknowledgements

The authors thank F. Marchesoni for discussions and for interpreting the results on stochastic resonance. Ş.K.Ö. thanks J. Mateo for support. L.Y. and Ş.K.Ö. are supported by ARO grant no. W911NF-12-1-0026. J.Z. is supported by the NSFC under grants nos. 61174084 and 61134008. Y.X.L. is supported by the NSFC under grant no. 61025022. Y.X.L. and J.Z. are supported by the National Basic Research Program of China (973 Program) under grant no. 2014CB921401, the NSFC under grant no. 61328502, the Tsinghua University Initiative Scientific Research Program and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation. F.N. is partially supported by the RIKEN iTHES Project, MURI Center for Dynamic Magneto-Optics, via AFOSR award no. FA9550-14-1-0040 and a Grant-in-Aid for Scientific Research (A). F.B. is supported by the NSFC under grant no. 11374165 and the 973 Program under grant no. 2013CB328702. The authors thank Z. Shen for helping with the numerical simulations used in the Supplementary Information.

Author information

F.M., J.Z. and Ş.K.Ö. contributed equally to this work. J.Z. and Ş.K.Ö. conceived the idea, J.Z. provided theoretical analysis under the guidance of Ş.K.Ö., Y.-x.L. and F.N. Ş.K.Ö. and L.Y. designed the experiments. F.M., J.Z. and B.P. performed the experiments and processed the data with help from Ş.K.Ö. and F.B. J.Z. and Ş.K.Ö. wrote the manuscript with contributions from all authors.

Correspondence to Jing Zhang or Şahin Kaya Özdemir or Lan Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2355 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monifi, F., Zhang, J., Özdemir, Ş. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nature Photon 10, 399–405 (2016) doi:10.1038/nphoton.2016.73

Download citation

Further reading