Cavity-enhanced light emission from electrically driven carbon nanotubes

Abstract

An important advancement towards optical communication on a chip would be the development of integratable, nanoscale photonic emitters with tailored optical properties. Here we demonstrate the use of carbon nanotubes as electrically driven high-speed emitters in combination with a nanophotonic cavity that allows for exceptionally narrow linewidths. The one-dimensional photonic crystal cavities are shown to spectrally select desired emission wavelengths, enhance intensity and efficiently couple light into the underlying photonic network with high reproducibility. Under pulsed voltage excitation, we realize on-chip modulation rates in the GHz range, compatible with active photonic networks. Because the linewidth of the molecular emitter is determined by the quality factor of the photonic crystal, our approach effectively eliminates linewidth broadening due to temperature, surface interaction and hot-carrier injection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: PCNBC device with coupled CNT light emitter.
Figure 2: Light emission from a CNT-coupled PCNBC device.
Figure 3: Transmission and emission spectra of CNTs in the photonic crystal waveguides with the air mode cavity.
Figure 4: Transmission and emission spectra of CNTs in photonic crystal waveguides with dielectric mode cavity.
Figure 5: The role of the metal contacts in light propagation and enhancement in PCNBC devices.
Figure 6: High-speed modulation of CNT emission in PCNBC devices.

References

  1. 1

    Shields, J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Jones, R. et al. Hybrid silicon integration. J Mater. Sci. Mater. Electron. 20, 3–9 (2009).

    Article  Google Scholar 

  3. 3

    Park, H.-G. et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photon. 2, 622–626 (2008).

    Article  Google Scholar 

  4. 4

    Berciaud, S. et al. Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett. 104, 227401 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    ADS  Article  Google Scholar 

  7. 7

    Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

    ADS  Article  Google Scholar 

  8. 8

    Krupke, R. et al. Contacting single bundles of carbon nanotubes with alternating electric fields. Appl. Phys. A 76, 397–400 (2003).

    ADS  Article  Google Scholar 

  9. 9

    Vijayaraghavan, A. et al. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7, 1556–1560 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007).

    ADS  Article  Google Scholar 

  11. 11

    Liu, Z., Bushmaker, A., Aykol, M. & Cronin, S. B. Thermal emission spectra from individual suspended carbon nanotubes. ACS Nano 5, 4634–4640 (2011).

    Article  Google Scholar 

  12. 12

    Khasminskaya, S., Pyatkov, F., Flavel, B. S., Pernice, W. H. P. & Krupke, R. Waveguide-integrated light-emitting carbon nanotubes. Adv. Mater. 26, 3465–3472 (2014).

    Article  Google Scholar 

  13. 13

    Pfeiffer, M. H. P. et al. Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices. Opt. Express 19, A1184–A1189 (2011).

    Article  Google Scholar 

  14. 14

    Jakubka, F. et al. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks. ACS Nano 7, 7428–7435 (2013).

    Article  Google Scholar 

  15. 15

    Jakubka, F., Grimm, S. B., Zakharko, Y., Gannott, F. & Zaumseil, J. Trion electroluminescence from semiconducting carbon nanotubes. ACS Nano 8, 8477–8486 (2014).

    Article  Google Scholar 

  16. 16

    Ardizzone, V. et al. Strong reduction of exciton-phonon coupling in high crystalline quality single-wall carbon nanotubes: a new insight into broadening mechanisms and exciton localization. Phys. Rev. B 91, 121410 (2015).

    ADS  Article  Google Scholar 

  17. 17

    Mori, T., Yamauchi, Y., Honda, S. & Maki, H. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes. Nano Lett. 14, 3277–3283 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Foresi, J. S. et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 (1997).

    ADS  Article  Google Scholar 

  19. 19

    Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    ADS  Article  Google Scholar 

  20. 20

    Gérardet, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    ADS  Article  Google Scholar 

  21. 21

    Agio, M. & Cano, D. M. Nano-optics: the Purcell factor of nanoresonators. Nature Photon. 7, 674–675 (2013).

    ADS  Article  Google Scholar 

  22. 22

    Barth, M., Nüsse, N., Löchel, B. & Benson, O. Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity. Opt. Lett. 34, 1108–1110 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    ADS  Article  Google Scholar 

  24. 24

    Lund-Hansen, T. et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Lee, K. G. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nature Photon. 5, 166–169 (2011).

    ADS  Article  Google Scholar 

  26. 26

    Birowosuto, M. D. et al. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nature Mater. 13, 279–285 (2014).

    ADS  Article  Google Scholar 

  27. 27

    Watahiki, R. et al. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities. Appl. Phys. Lett. 101, 141124 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Miura, R. et al. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nature Commun. 5, 5580 (2014).

    ADS  Article  Google Scholar 

  29. 29

    Gaufrès, E. et al. Light emission in silicon from carbon nanotubes. ACS Nano 6, 3813–3819 (2012).

    Article  Google Scholar 

  30. 30

    Quan, Q., Deotare, P. B. & Loncar, M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl. Phys. Lett. 96, 203102 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Quan, Q. & Loncar, M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt. Express 19, 18529–18542 (2011).

    ADS  Article  Google Scholar 

  32. 32

    Khan, M., Babinec, T., McCutcheon, M. W., Deotare, P. & Lončar, M. Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities. Opt. Lett. 36, 421–423 (2011).

    ADS  Article  Google Scholar 

  33. 33

    Christofilos, D. et al. Optical imaging and absolute absorption cross section measurement of individual nano-objects on opaque substrates: single-wall carbon nanotubes on silicon. J. Phys. Chem. Lett. 3, 1176–1181 (2012).

    Article  Google Scholar 

  34. 34

    Taflove, A., Oskooi, A. & Johnson, S. G. (eds) Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology Ch. 4 (Artech House, 2013).

    Google Scholar 

  35. 35

    Reich, S. et al. Excited-state carrier lifetime in single-walled carbon nanotubes. Phys. Rev. B 71, 033402 (2005).

    Article  Google Scholar 

  36. 36

    Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004).

    ADS  Article  Google Scholar 

  37. 37

    Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

    ADS  Article  Google Scholar 

  38. 38

    Högele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    ADS  Article  Google Scholar 

  39. 39

    Ma, X., Hartmann, N. F., Baldwin, J. K. S., Doorn, S. K. & Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nature Nanotech. 10, 671–675 (2015).

    ADS  Article  Google Scholar 

  40. 40

    Hennrich, F., Moshammer, K. & Kappes, M. M. Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2, 599–606 (2009).

    Article  Google Scholar 

  41. 41

    Stürzl, N., Hennrich, F., Lebedkin, S. & Kappes, M. M. Near monochiral single-walled carbon nanotube dispersions in organic solvents. J. Phys. Chem. C 113, 14628–14632 (2009).

    Article  Google Scholar 

  42. 42

    Marquardt, C. W. et al. Electroluminescence from a single nanotube–molecule–nanotube junction. Nature Nanotech. 5, 863–867 (2010).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

W.H.P. Pernice acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) grants PE 1832/1-1 & PE 1832/1-2 and the Helmholtz society through grant HIRG-0005, as well as support by the DFG and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN). R. Krupke and F. Pyatkov acknowledge funding by the Volkswagen Foundation. B.S. Flavel acknowledges support by the DFG grant FL 834/1-1. F. Hennrich, M.M. Kappes and R. Krupke acknowledge support by Helmholtz society through program STN and by the KNMF. We thank S. Kühn and S. Diewald for the help with device fabrication and P. Löser for the preparation of CNT suspensions.

Author information

Affiliations

Authors

Contributions

The experiment was conceived and designed by W.H.P.P. and R.K. F.P., V.F. and S.K. fabricated the devices and carried out the experiments. The carbon nanotube suspensions were provided by F.H., B.S.F. and M.M.K. V.F. performed the simulations. The data were analysed by F.P., V.F., S.K., R.K. and W.H.P.P. All the authors contributed to discussions and manuscript preparation.

Corresponding authors

Correspondence to Ralph Krupke or Wolfram H. P. Pernice.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2517 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pyatkov, F., Fütterling, V., Khasminskaya, S. et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nature Photon 10, 420–427 (2016). https://doi.org/10.1038/nphoton.2016.70

Download citation

Further reading