Planar optics with patterned chiral liquid crystals



Reflective metasurfaces based on metallic1,2,3 and dielectric4,5 nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals6,7 with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0–2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Reflection phase control in a ChLC.
Figure 2: Reflective deflectors with patterned ChLCs.
Figure 3: Reflective lenses with patterned ChLCs.
Figure 4: Tunable non-specular reflectors with ChLCs.


  1. 1

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    ADS  Article  Google Scholar 

  2. 2

    Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nature Photon. 8, 889–898 (2014).

    ADS  Article  Google Scholar 

  3. 3

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  4. 4

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    ADS  Article  Google Scholar 

  5. 5

    Fattal, D., Li, J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nature Photon. 4, 466–470 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Yeh, P. & Gu, C. Optics of Liquid Crystal Displays 2nd edn (Wiley, 2009).

    Google Scholar 

  7. 7

    de Vries, H. Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr. 4, 219–226 (1951).

    Article  Google Scholar 

  8. 8

    Huang, Y., Zhou, Y., Doyle, C. & Wu, S.-T. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt. Express 14, 1236–1242 (2006).

    ADS  Article  Google Scholar 

  9. 9

    Hikmet, R. A. M. & Kemperman, H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 392, 476–479 (1998).

    ADS  Article  Google Scholar 

  10. 10

    Kahn, F. J. Electric-field-induced color changes and pitch DILATION in cholesteric liquid crystals. Phys. Rev. Lett. 24, 209–212 (1970).

    ADS  Article  Google Scholar 

  11. 11

    Brehmer, M., Lub, J. & van de Witte, P. Light-induced color change of cholesteric copolymers. Adv. Mater. 10, 1438–1441 (1998).

    Article  Google Scholar 

  12. 12

    Berreman, D. W. Optics in stratified and anisotropic media: 4 × 4-matrix formulation. J. Opt. Soc. Am. 62, 502–510 (1972).

    ADS  Article  Google Scholar 

  13. 13

    Honma, M. & Nose, T. Polarization-independent liquid crystal grating fabricated by microrubbing process. Jpn. J. Appl. Phys. 42, 6992–6997 (2003).

    ADS  Article  Google Scholar 

  14. 14

    Kim, J.-H., Yoneya, M. & Yokoyama, H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature 420, 159–162 (2002).

    ADS  Article  Google Scholar 

  15. 15

    Chigrinov, V. G. et al. Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

    Google Scholar 

  16. 16

    Ichimura, K. Photoalignment of liquid-crystal systems. Chem. Rev. 100, 1847–1874 (2000).

    Article  Google Scholar 

  17. 17

    Nersisyan, S. R. & Tabiryan, N. V. Polarization imaging components based on patterned photoalignment. Mol. Cryst. Liq. Cryst. 489, 156–168 (2008).

    Article  Google Scholar 

  18. 18

    Vernon, J. P. et al. Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells. Adv. Opt. Mater. 1, 84–91 (2013).

    Article  Google Scholar 

  19. 19

    Culbreath, C., Glazar, N. & Yokoyama, H. Note: Automated maskless micro-multidomain photoalignment. Rev. Sci. Instrum. 82, 126107 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Yoshida, H., Asakura, K., Fukuda, J. & Ozaki, M. Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks. Nature Commun. 6, 7180 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Lee, C. H., Yoshida, H., Miura, Y., Fujii, A. & Ozaki, M. Local liquid crystal alignment on patterned micrograting structures photofabricated by two photon excitation direct laser writing. Appl. Phys. Lett. 93, 173509 (2008).

    ADS  Article  Google Scholar 

  22. 22

    Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Goodman, J. W. Introduction to Fourier Optics 3rd edn (Roberts & Company, 2005).

    Google Scholar 

  24. 24

    Gauza, S. et al. Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals. Jpn. J. Appl. Phys. 43, 7634–7638 (2004).

    ADS  Article  Google Scholar 

  25. 25

    Broer, D. J., Lub, J. & Mol, G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467–469 (1995).

    ADS  Article  Google Scholar 

  26. 26

    Sugita, A. et al. Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4 × 4 matrix method. Jpn. J. Appl. Phys. 21, 1543–1546 (1982).

    ADS  Article  Google Scholar 

  27. 27

    Matsui, T., Ozaki, R., Funamoto, K., Ozaki, M. & Yoshino, K. Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal. Appl. Phys. Lett. 81, 3741 (2002).

    ADS  Article  Google Scholar 

  28. 28

    Inoue, Y., Yoshida, H., Kubo, H. & Ozaki, M. Deformation-free, microsecond electro-optic tuning of liquid crystals. Adv. Opt. Mater. 1, 256–263 (2013).

    Article  Google Scholar 

  29. 29

    McCollough, G. T., Rankin, C. M. & Weiner, M. L. Roll-to-roll manufacturing considerations for flexible, cholesteric liquid-crystal display (Ch-LCD) media. J. Soc. Info. Disp. 14, 25–30 (2006).

    Article  Google Scholar 

Download references


The authors thank R. Ozaki for discussions. The authors also thank the DIC Corporation for providing the photoalignment material, and Merck KGaA for providing the chiral dopant. This study was supported by a Grant-in-Aid for JSPS Fellows (15J00288), the MEXT Photonics Advanced Research Centre Program (Osaka University), and JST, PRESTO.

Author information




J.K. designed the reflectors and carried out the experimental demonstrations and numerical simulations. H.Y. conceived and directed the study. M.O. supervised the study. All authors discussed the results and worked on the manuscript.

Corresponding author

Correspondence to Hiroyuki Yoshida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1146 kb)

Supplementary information

Supplementary Movie 1 (MP4 217 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kobashi, J., Yoshida, H. & Ozaki, M. Planar optics with patterned chiral liquid crystals. Nature Photon 10, 389–392 (2016).

Download citation

Further reading