Abstract
Almost 15 years have passed since the initial demonstrations of terahertz (THz) wireless communications were made using both pulsed and continuous waves. THz technologies are attracting great interest and are expected to meet the ever-increasing demand for high-capacity wireless communications. Here, we review the latest trends in THz communications research, focusing on how photonics technologies have played a key role in the development of first-age THz communication systems. We also provide a comparison with other competitive technologies, such as THz transceivers enabled by electronic devices as well as free-space lightwave communications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Terahertz Beam Steering with Curved Metasurfaces
Journal of Infrared, Millimeter, and Terahertz Waves Open Access 15 May 2023
-
A combined fibre/free-space-optical communication system for long-haul wireline/wireless transmission at millimetre-wave/sub-THz frequencies
Communications Engineering Open Access 03 May 2023
-
Conformal leaky-wave antennas for wireless terahertz communications
Communications Engineering Open Access 19 April 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Cisco The Zettabyte Era: Trends and Analysis 1–24 (Cisco and/or its affiliates, 2014).
Kürner, T. & Priebe, S. Towards THz communications — status in research, standardization and regulation. J. Infrared Milli. Terahz Waves 35, 53–62 (2014).
Fettweis, G., Guderian, F. & Krone, S. In Design, Automation & Test in Europe Conf. (DATE11) 1–6 (IEEE, 2011).
Pagani, M. & Italia, H. Microwave digital radio link transceivers: historical aspects and trends. In IEEE Int. Microwave Symp. (IMS2015) Workshop WMH-2 (IEEE, 2015).
Niu, Y., Li, Y., Jin, D., Su, L. & Vasilakos, A. V. A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wirel. Netw. 21, 2657–2676 (2015).
Nagatsuma, T. et al. A 120-GHz integrated photonic transmitter. In IEEE Topical Meeting on Microwave Photonics (MWP2000) 225–228 (IEEE, 2000).
Kleine-Ostmann, T., Pierz, K., Hein, G., Dawson, P. & Koch, M. Audio signal transmission over THz communication channel using semiconductor modulator. Electron. Lett. 40, 124–125 (2004).
Liu, T.-A., Lin, G.-R., Chang, Y.-C. & Pan, C.-L. Wireless audio and burst communication link with directly modulated THz photoconductive antenna. Opt. Express 13, 10416–10423 (2005).
Hirata, A. et al. 120-GHz-band wireless link technologies for outdoor 10-Gbit/s data transmission. IEEE Trans. Microw. Theory Tech. 60, 881–895 (2012).
Takahashi, H. et al. 120-GHz-band 20-Gbit/s transmitter and receiver MMICs using quadrature phase shift keying. In Proc. 2012 7th European Microwave Integrated Circuit Conf. (EuMIC) 313–316 (IEEE, 2012).
Shannon, C. E. Communication in the presence of noise. Proc. Inst. Radio Eng. 37, 10–21 (1949).
International Telecommunication Union ITU-R P.676-6: Attenuation by Atmospheric Gases (ITU, 2005).
International Telecommunication Union ITU-R P.838-3: Specific Attenuation Model for Rain for use in Prediction Methods (ITU, 2005).
Pozar, D. M. Microwave Engineering 4th edn (John Wiley and Sons, 2011).
Han, S., I, C., Xu, Z. & Rowell, C. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53, 186–194 (2015).
Suen, J. Y., Fang, M. T., Denny, S. P. & Lubin, P. M. Modeling of terabit geostationary terahertz satellite links from globally dry locations. IEEE Trans. Terahz Sci. Technol. 5, 299–313 (2015).
Task Group 3d 100 Gbit/s Wireless (TG 3d (100G)); http://www.ieee802.org/15/pub/index_TG3d.html
Tsonev, D., Videv, S. & Haas, H. Towards a 100 Gb/s visible light wireless access network. Opt. Express 23, 1627–1637 (2015).
Zheng, Z., Liu, L., Chen, T. & Hu, W. W. Integrated system of free-space optical and visible light communication for indoor wireless broadband access. Electron. Lett. 51, 1943–1944 (2015).
Oh, C. W., Tangdiongga, E. & Koonen, A. M. J. Steerable pencil beams for multi-Gbps indoor optical wireless communication. Opt. Lett. 39, 5427–5430 (2014).
Fath, T. & Haas, H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 61, 733–742 (2013).
International Telecommunication Union ITU-R P.840-3: Attenuation due to Clouds and Fog (ITU, 1999).
Ma, J., Vorrius, F., Lamb, L., Moeller, L. & Federici, J. F. Experimental comparison of terahertz and infrared signaling in laboratory-controlled rain. J. Infrared Milli. Terahz Waves 36, 856–865 (2015).
Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nature Photon. 7, 354–362 (2013).
Song, H. J. et al. Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW. IEEE Microw. Wireless Components Lett. 22, 363–365 (2012).
Wun, J. M., Lai, C. H., Chen, N. W., Bowers, J. E. & Shi, J. W. Flip-chip bonding packaged THz photodiode with broadband high-power performance. IEEE Photon. Technol. Lett. 26, 2462–2464 (2014).
Nagatsuma, T. & Carpintero, G. Recent progress and future prospect of photonics-enabled terahertz communications research. IEICE Trans. Electron. E98-C, 1060–1070 (2015).
Shams, H. et al. Photonic generation for multichannel THz wireless communication. Opt. Express 22, 23465–123472 (2014).
Ducournau, G. et al. Ultrawide bandwidth single channel 0.4 THz wireless link combining broadband quasi-optic photomixer and coherent detection. IEEE Trans. Terahz Sci. Technol. 4, 328–337 (2014).
Li, X. et al. A 400G optical wireless integration delivery system. Opt. Express 21, 187894–187899 (2013).
Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nature Photon. 7, 977–981 (2013).
Bowers, S. M., Abiri, B., Aflatouni, F. & Hajimiri, A. A compact optically driven travelling-wave radiating source. In 2014 Optical Fiber Commun. Conf. Exhibit. (OFC) Tu2A.3 (OSA, 2014).
Nagatsuma, T. et al. Terahertz wireless communications based on photonics technologies. Opt. Express 21, 477–487 (2013).
Ducournau, G. et al. Coherent THz communication at 200 GHz using a frequency comb, UTC-PD and electronic detection. Electron. Lett. 50, 386–388 (2014).
Kanno, A. et al. Coherent terahertz wireless signal transmission using advanced optical fiber communication technology. J. Infrared Milli. Terahz Waves 36, 180–197 (2015).
Hyodo, M., Tani, M., Matsuura, S., Onodera, N. & Sakai, K. Generation of millimetre-wave generation using a dual-longitudinal mode microchip laser. Electron. Lett. 32, 1589–1591 (1996).
Cliche, J.-F., Shillue, B., Têtu, M. & Poulain, M. A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radiotelescope. In IEEE Int. Microwave Symp. (IMS2007) 349–352 (IEEE, 2007).
Pillet, G. et al. Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals. IEEE J. Lightwave Technol. 26, 2764–2773 (2008).
Danion, G. et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes. Opt. Express 22, 17673–17678 (2014).
Pillet, G. et al. Dual-frequency laser phase locked at 100 GHz. IEEE J. Lightwave Technol. 32, 3824–3830 (2014).
Gross, M. C. et al. Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser. Opt. Express 18, 13321–13330 (2010).
Ducournau, G. et al. Highly coherent THz wave generation with a dual frequency Brillouin fiber laser and a 1.55 μm photomixer. Opt. Lett. 36, 2044–2046 (2011).
Yoshimizu, Y. et al. Wireless transmission using coherent terahertz wave with phase stabilization. IEICE Electron. Express 10, 578–585 (2013).
Shao, H. et al. Heterogeneously integrated III–V/silicon dual-mode distributed feedback laser array for THz generation Opt. Lett. 39, 6403–6406 (2014).
Debut, A., Randoux, S. & Zemmouri, J. Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers. J. Opt. Soc. Am. B 18, 556–567 (2001).
Ducournau, G. et al. Cascaded Brillouin fibre lasers coupled to unitravelling carrier photodiodes for narrow linewidth terahertz generation. Electron. Lett. 50, 690–692 (2014).
Moeller, L., Federici, J. & Su, K. 2.5Gbit/s duobinary signaling with narrow bandwidth 0.625 terahertz source. Electron. Lett. 47, 856–858 (2011).
Jastrow, C. et al. Wireless digital data transmission at 300 GHz. Electron. Lett. 46, 661–663 (2010).
Song, H. J., Kim, J. Y., Ajito, K., Yaita, M. & Kukutsu, N. Fully integrated ASK receiver MMIC for terahertz communications at 300 GHz. IEEE Trans. Terahz Sci. Technol. 3, 445–452 (2013).
Song, H. J., Kim, J. Y., Ajito, K., Kukutsu, N. & Yaita, M. 50-Gb/s direct conversion QPSK modulator and demodulator MMICs for terahertz communications at 300 GHz. IEEE Trans. Microw. Theory Tech. 62, 600–609 (2014).
Kallfass, I. et al. Towards MMIC-based 300 GHz indoor wireless communication systems. IEICE Trans. Electron. E98-C, 1081–1088 (2015).
Carpenter, S., Abbasi, M. & Zirath, H. Fully integrated D-band direct carrier quadrature (I/Q) modulator and demodulator circuits in InP DHBT technology. IEEE Trans. Microw. Theory Tech. 63, 1666–1675 (2015).
Zaknoune, M. III–V technologies for mmW and THz applications. In IEEE Int. Microwave Symp. (IMS2015) Workshop WSI-2 (IEEE, 2015).
Schlechtweg, M. Multifunctional circuits and modules based on III/V mHEMT technology for (sub-)millimeter-wave applications in space, communication and sensing. In IEEE Int. Microwave Symp. (IMS2015) Workshop WSI-6 (IEEE, 2015).
Pfeiffer, U. RF front-ends for mm-wave and THz application in SiGe/CMOS. In IEEE Int. Microwave Symp. (IMS2015) Workshop WSI-5 (IEEE, 2015).
Zhao, Y., Ojefors, E., Aufinger, K., Meister, T. F. & Pfeiffer, U. R. A 160 GHz subharmonic transmitter and receiver chipset in an SiGe HBT technology. IEEE Trans. Microw. Theory Tech. 60, 3286–3299 (2012).
Fujishima, M., Amakawa, S., Takano, K., Katayama, K. & Yoshida, T. Terahertz CMOS design for low-power and high-speed wireless communication. IEICE Trans. Electron. E98-C, 1091–1104 (2015).
Sengupta, K. & Hajimiri, A. A 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators. IEEE J. Solid-State Circuits 47, 3013–3031 (2012).
Han, R. & Afshari, E. A CMOS high-power broadband 260-GHz radiator array for spectroscopy. IEEE J. Solid-State Circuits 48, 3090–3104 (2013).
Kallfass, I. et al. 64 Gbit/s transmission over 850 m fixed wireless link at 240 GHz carrier frequency. J. Infrared Milli. Terahz Waves 36, 221–233 (2015).
Ducournau, G. et al. 32 Gbit/s QPSK transmission at 385 GHz using coherent fibre-optic technologies and THz double heterodyne detection. Electron. Lett. 12, 915–917 (2015).
Yu, X. et al. 60 Gbit/s 400 GHz wireless transmission. In Int. Conf. on Photonics in Switching (PS2015) 4–6 (IEEE, 2015).
Moeller, L., Federici, J. & Su, K. 2.5Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source. Electron. Lett. 47, 856–858 (2011).
Wang, C. et al. 0.34-THz wireless link based on high-order modulation for future wireless local area network applications. IEEE Trans. Terahz Sci. Technol. 4, 75–85 (2014).
Bennett, G. & Melle, S. Superchannels, flex-grid, multilayer switching key developments for next-gen transport networks. Lightwave http://go.nature.com/7EISV5 (2013).
Winzer, P. J. & Essiambre, R. Advanced optical modulation formats. Proc. IEEE 94, 952–985 (2006).
Crowe, T. W. et al. GaAs Schottky diodes for THz mixing applications. Proc. IEEE 80, 1827–1841 (1992).
Nicholas, C. E. B. & Currie, C. Principles and Applications of Millimetre Wave Radar (Artech House, 1987).
Maher, R., Alvarado, A., Lavery, D. & Bayvel, P. Increasing the information rates of optical communications via coded modulation: a study of transceiver performance. Sci. Rep. 6, 21278 (2016).
Martiskainen, M. & Coburn, J. The role of information and communication technologies (ICTs) in household energy consumption-prospects for the UK. Energy Efficiency 4, 209–221 (2011).
Smit, M. et al. Generic foundry model for InP-based photonics. IET Optoelectron. 5, 187–194 (2011).
Balakier, K. et al. Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz. Opt. Express 22, 29404–29412 (2014).
van Dijk, F. et al. Integrated InP heterodyne millimeter wave transmitter. IEEE Photon. Technol. Lett. 26, 965–968 (2014).
Carpintero, G. et al. Microwave photonic integrated circuits for millimeter-wave wireless communications. IEEE J. Lightwave Technol. 32, 3495–3501 (2014).
Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quant. Electron. 19, 6100117 (2013).
Baets, R. et al. Integration of photonic functions in and with silicon. In 34th European Solid-State Device Res. Conf. (ESSDERC2004) 57–62 (IEEE, 2004).
Duan, G. H. et al. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quant. Electron. 20, 6100213 (2014).
Lee, A. D. et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J. Sel. Top. Quant. Electron. 19, 1901107 (2013).
Beling, A. et al. InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation. Opt. Express 21, 25901–25906 (2013).
Eriksson, K., Darwazeh, I. & Zirath, H. InP DHBT distributed amplifiers with up to 235-GHz bandwidth. IEEE Trans. Microw. Theory Tech. 63, 1334–1341 (2015).
Umezawa, T. et al. High conversion gain, low power consumption W-band photoreceiver integrated with UTC-PD and InP-PHEMT amplifier. In IEEE Topical Meeting in Microwave Photonics TuC-3 (IEEE, 2015).
Ito, H. et al. Pre-amplifier integrated uni-travelling carrier photodiode module for operation in 120 GHz band. Electron. Lett. 41, 360–362 (2005).
Kashio, N. et al. Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth. IEEE Trans. Electron Dev. 54, 1651–1657 (2007).
Mitrofanov, O., Tan, T., Mark, P. R., Bowden, B. & Harrington, J. A. Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy. Appl. Phys. Lett. 94, 171104 (2009).
Tsuruda, K., Fujita, M. & Nagatsuma, T. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab. Opt. Express 23, 250727 (2015).
Zhan, H., Mendis, R. & Mittleman, D. M. Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides. Opt. Express 18, 9643–9650 (2010).
Withayachumnankul, W. & Abbott, D. Metamaterials in the terahertz regime. IEEE Photon. J. 1, 99–118 (2009).
Savo, S., Shrekenhamer, D. & Padilla, W. J. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater. 2, 275–279 (2014).
Zhang, Y. et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett. 15, 3501–3506 (2015).
Abbas, A., Karabiyik, M. & Pala, N. Graphene-based field-effect transistor structures for terahertz applications. Proc. SPIE 8363, 83630S (2012).
Tong, J. Y., Muthee, M., Chen, S. Y., Yngvesson, S. K. & Yan, J. Antenna enhanced graphene THz emitter and detector. Nano Lett. 15, 5295–5301 (2015).
Liu, P. Q. et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nature Commun. 6, 8969 (2015).
Mittendorff, M. et al., Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 103, 021113 (2013).
Knap, W. et al. Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl. Phys. Lett. 80, 3433–3435 (2010).
Otsuji, T. Trends in the research of modern terahertz detectors: plasmon detectors. IEEE Trans. Terahz Sci. Technol. 5, 1110–1120 (2015).
Tohme, L. et al. Terahertz wireless communication using GaAs transistors as detectors. Electron. Lett. 50, 323–325 (2014).
Acknowledgements
T.N. acknowledges the Ministry of Internal Affairs and Communications (MIC) Japan for funding the Strategic Information and Communications R&D Promotion Programme (SCOPE), and the Japan Science and Technology Agency (JST) for funding the Industry-Academia Collaborative R&D Program. G.D. gratefully acknowledges the French Agence Nationale de la Recherche (ANR) for funding the COM'TONIQ 'Infra' 2013 programme on THz communications, through the grant ANR-13-INFR-0011-01, and the support from several French research programmes and institutes: Lille University, IEMN institute (RF/MEMS Characterization Center, Nanofab and Telecom platforms, IRCICA), the CNRS and by the French RENATECH network. This work was also partly supported by the French 'Programmes d'investissement d'avenir' Equipex FLUX 0017, ExCELSiOR project and the Nord-Pas de Calais Regional council and the FEDER through the CPER 'Photonics for Society'. Some of the work was also supported by a IEMN-Lille University-Tektronix academic-industrial partnership on THz communications. C.R. acknowledges the UK Engineering and Physical Science Research Council for its funding of the programme grant on 'Coherent Terahertz Systems' and the European Commission for its support of the IPHOBAC-NG project and FiWin5G Marie Curie ITN.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Nagatsuma, T., Ducournau, G. & Renaud, C. Advances in terahertz communications accelerated by photonics. Nature Photon 10, 371–379 (2016). https://doi.org/10.1038/nphoton.2016.65
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2016.65
This article is cited by
-
A combined fibre/free-space-optical communication system for long-haul wireline/wireless transmission at millimetre-wave/sub-THz frequencies
Communications Engineering (2023)
-
Photonic comb-rooted synthesis of ultra-stable terahertz frequencies
Nature Communications (2023)
-
Conformal leaky-wave antennas for wireless terahertz communications
Communications Engineering (2023)
-
Terahertz Beam Steering with Curved Metasurfaces
Journal of Infrared, Millimeter, and Terahertz Waves (2023)
-
A simplified model for predicting the nonlinear properties of water and centrosymmetric media at terahertz frequencies
Optical and Quantum Electronics (2023)