Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in terahertz communications accelerated by photonics

Abstract

Almost 15 years have passed since the initial demonstrations of terahertz (THz) wireless communications were made using both pulsed and continuous waves. THz technologies are attracting great interest and are expected to meet the ever-increasing demand for high-capacity wireless communications. Here, we review the latest trends in THz communications research, focusing on how photonics technologies have played a key role in the development of first-age THz communication systems. We also provide a comparison with other competitive technologies, such as THz transceivers enabled by electronic devices as well as free-space lightwave communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impact of atmospheric attenuation of THz waves.
Figure 2: Application of THz links in networks.
Figure 3: Examples of THz links using photonics-based transmitters.
Figure 4: Enabling technologies based on photonics and new materials for future THz communications.

Similar content being viewed by others

References

  1. Cisco The Zettabyte Era: Trends and Analysis 1–24 (Cisco and/or its affiliates, 2014).

  2. Kürner, T. & Priebe, S. Towards THz communications — status in research, standardization and regulation. J. Infrared Milli. Terahz Waves 35, 53–62 (2014).

    Article  Google Scholar 

  3. Fettweis, G., Guderian, F. & Krone, S. In Design, Automation & Test in Europe Conf. (DATE11) 1–6 (IEEE, 2011).

    Google Scholar 

  4. Pagani, M. & Italia, H. Microwave digital radio link transceivers: historical aspects and trends. In IEEE Int. Microwave Symp. (IMS2015) Workshop WMH-2 (IEEE, 2015).

    Google Scholar 

  5. Niu, Y., Li, Y., Jin, D., Su, L. & Vasilakos, A. V. A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wirel. Netw. 21, 2657–2676 (2015).

    Article  Google Scholar 

  6. Nagatsuma, T. et al. A 120-GHz integrated photonic transmitter. In IEEE Topical Meeting on Microwave Photonics (MWP2000) 225–228 (IEEE, 2000).

    Google Scholar 

  7. Kleine-Ostmann, T., Pierz, K., Hein, G., Dawson, P. & Koch, M. Audio signal transmission over THz communication channel using semiconductor modulator. Electron. Lett. 40, 124–125 (2004).

    Article  Google Scholar 

  8. Liu, T.-A., Lin, G.-R., Chang, Y.-C. & Pan, C.-L. Wireless audio and burst communication link with directly modulated THz photoconductive antenna. Opt. Express 13, 10416–10423 (2005).

    Article  ADS  Google Scholar 

  9. Hirata, A. et al. 120-GHz-band wireless link technologies for outdoor 10-Gbit/s data transmission. IEEE Trans. Microw. Theory Tech. 60, 881–895 (2012).

    Article  ADS  Google Scholar 

  10. Takahashi, H. et al. 120-GHz-band 20-Gbit/s transmitter and receiver MMICs using quadrature phase shift keying. In Proc. 2012 7th European Microwave Integrated Circuit Conf. (EuMIC) 313–316 (IEEE, 2012).

    Google Scholar 

  11. Shannon, C. E. Communication in the presence of noise. Proc. Inst. Radio Eng. 37, 10–21 (1949).

    MathSciNet  Google Scholar 

  12. International Telecommunication Union ITU-R P.676-6: Attenuation by Atmospheric Gases (ITU, 2005).

  13. International Telecommunication Union ITU-R P.838-3: Specific Attenuation Model for Rain for use in Prediction Methods (ITU, 2005).

  14. Pozar, D. M. Microwave Engineering 4th edn (John Wiley and Sons, 2011).

    Google Scholar 

  15. Han, S., I, C., Xu, Z. & Rowell, C. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53, 186–194 (2015).

    Article  Google Scholar 

  16. Suen, J. Y., Fang, M. T., Denny, S. P. & Lubin, P. M. Modeling of terabit geostationary terahertz satellite links from globally dry locations. IEEE Trans. Terahz Sci. Technol. 5, 299–313 (2015).

    Article  ADS  Google Scholar 

  17. Task Group 3d 100 Gbit/s Wireless (TG 3d (100G)); http://www.ieee802.org/15/pub/index_TG3d.html

  18. Tsonev, D., Videv, S. & Haas, H. Towards a 100 Gb/s visible light wireless access network. Opt. Express 23, 1627–1637 (2015).

    Article  ADS  Google Scholar 

  19. Zheng, Z., Liu, L., Chen, T. & Hu, W. W. Integrated system of free-space optical and visible light communication for indoor wireless broadband access. Electron. Lett. 51, 1943–1944 (2015).

    Article  Google Scholar 

  20. Oh, C. W., Tangdiongga, E. & Koonen, A. M. J. Steerable pencil beams for multi-Gbps indoor optical wireless communication. Opt. Lett. 39, 5427–5430 (2014).

    Article  ADS  Google Scholar 

  21. Fath, T. & Haas, H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 61, 733–742 (2013).

    Article  Google Scholar 

  22. International Telecommunication Union ITU-R P.840-3: Attenuation due to Clouds and Fog (ITU, 1999).

  23. Ma, J., Vorrius, F., Lamb, L., Moeller, L. & Federici, J. F. Experimental comparison of terahertz and infrared signaling in laboratory-controlled rain. J. Infrared Milli. Terahz Waves 36, 856–865 (2015).

    Article  Google Scholar 

  24. Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nature Photon. 7, 354–362 (2013).

    Article  ADS  Google Scholar 

  25. Song, H. J. et al. Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW. IEEE Microw. Wireless Components Lett. 22, 363–365 (2012).

    Article  Google Scholar 

  26. Wun, J. M., Lai, C. H., Chen, N. W., Bowers, J. E. & Shi, J. W. Flip-chip bonding packaged THz photodiode with broadband high-power performance. IEEE Photon. Technol. Lett. 26, 2462–2464 (2014).

    Article  ADS  Google Scholar 

  27. Nagatsuma, T. & Carpintero, G. Recent progress and future prospect of photonics-enabled terahertz communications research. IEICE Trans. Electron. E98-C, 1060–1070 (2015).

    Article  ADS  Google Scholar 

  28. Shams, H. et al. Photonic generation for multichannel THz wireless communication. Opt. Express 22, 23465–123472 (2014).

    Article  ADS  Google Scholar 

  29. Ducournau, G. et al. Ultrawide bandwidth single channel 0.4 THz wireless link combining broadband quasi-optic photomixer and coherent detection. IEEE Trans. Terahz Sci. Technol. 4, 328–337 (2014).

    Article  ADS  Google Scholar 

  30. Li, X. et al. A 400G optical wireless integration delivery system. Opt. Express 21, 187894–187899 (2013).

    Google Scholar 

  31. Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nature Photon. 7, 977–981 (2013).

    Article  ADS  Google Scholar 

  32. Bowers, S. M., Abiri, B., Aflatouni, F. & Hajimiri, A. A compact optically driven travelling-wave radiating source. In 2014 Optical Fiber Commun. Conf. Exhibit. (OFC) Tu2A.3 (OSA, 2014).

    Google Scholar 

  33. Nagatsuma, T. et al. Terahertz wireless communications based on photonics technologies. Opt. Express 21, 477–487 (2013).

    Article  Google Scholar 

  34. Ducournau, G. et al. Coherent THz communication at 200 GHz using a frequency comb, UTC-PD and electronic detection. Electron. Lett. 50, 386–388 (2014).

    Article  Google Scholar 

  35. Kanno, A. et al. Coherent terahertz wireless signal transmission using advanced optical fiber communication technology. J. Infrared Milli. Terahz Waves 36, 180–197 (2015).

    Article  Google Scholar 

  36. Hyodo, M., Tani, M., Matsuura, S., Onodera, N. & Sakai, K. Generation of millimetre-wave generation using a dual-longitudinal mode microchip laser. Electron. Lett. 32, 1589–1591 (1996).

    Article  Google Scholar 

  37. Cliche, J.-F., Shillue, B., Têtu, M. & Poulain, M. A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radiotelescope. In IEEE Int. Microwave Symp. (IMS2007) 349–352 (IEEE, 2007).

    Google Scholar 

  38. Pillet, G. et al. Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals. IEEE J. Lightwave Technol. 26, 2764–2773 (2008).

    Article  ADS  Google Scholar 

  39. Danion, G. et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes. Opt. Express 22, 17673–17678 (2014).

    Article  ADS  Google Scholar 

  40. Pillet, G. et al. Dual-frequency laser phase locked at 100 GHz. IEEE J. Lightwave Technol. 32, 3824–3830 (2014).

    Article  ADS  Google Scholar 

  41. Gross, M. C. et al. Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser. Opt. Express 18, 13321–13330 (2010).

    Article  ADS  Google Scholar 

  42. Ducournau, G. et al. Highly coherent THz wave generation with a dual frequency Brillouin fiber laser and a 1.55 μm photomixer. Opt. Lett. 36, 2044–2046 (2011).

    Article  ADS  Google Scholar 

  43. Yoshimizu, Y. et al. Wireless transmission using coherent terahertz wave with phase stabilization. IEICE Electron. Express 10, 578–585 (2013).

    Article  Google Scholar 

  44. Shao, H. et al. Heterogeneously integrated III–V/silicon dual-mode distributed feedback laser array for THz generation Opt. Lett. 39, 6403–6406 (2014).

    Article  ADS  Google Scholar 

  45. Debut, A., Randoux, S. & Zemmouri, J. Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers. J. Opt. Soc. Am. B 18, 556–567 (2001).

    Article  ADS  Google Scholar 

  46. Ducournau, G. et al. Cascaded Brillouin fibre lasers coupled to unitravelling carrier photodiodes for narrow linewidth terahertz generation. Electron. Lett. 50, 690–692 (2014).

    Article  Google Scholar 

  47. Moeller, L., Federici, J. & Su, K. 2.5Gbit/s duobinary signaling with narrow bandwidth 0.625 terahertz source. Electron. Lett. 47, 856–858 (2011).

    Article  Google Scholar 

  48. Jastrow, C. et al. Wireless digital data transmission at 300 GHz. Electron. Lett. 46, 661–663 (2010).

    Article  Google Scholar 

  49. Song, H. J., Kim, J. Y., Ajito, K., Yaita, M. & Kukutsu, N. Fully integrated ASK receiver MMIC for terahertz communications at 300 GHz. IEEE Trans. Terahz Sci. Technol. 3, 445–452 (2013).

    Article  ADS  Google Scholar 

  50. Song, H. J., Kim, J. Y., Ajito, K., Kukutsu, N. & Yaita, M. 50-Gb/s direct conversion QPSK modulator and demodulator MMICs for terahertz communications at 300 GHz. IEEE Trans. Microw. Theory Tech. 62, 600–609 (2014).

    Article  ADS  Google Scholar 

  51. Kallfass, I. et al. Towards MMIC-based 300 GHz indoor wireless communication systems. IEICE Trans. Electron. E98-C, 1081–1088 (2015).

    Article  ADS  Google Scholar 

  52. Carpenter, S., Abbasi, M. & Zirath, H. Fully integrated D-band direct carrier quadrature (I/Q) modulator and demodulator circuits in InP DHBT technology. IEEE Trans. Microw. Theory Tech. 63, 1666–1675 (2015).

    Article  ADS  Google Scholar 

  53. Zaknoune, M. III–V technologies for mmW and THz applications. In IEEE Int. Microwave Symp. (IMS2015) Workshop WSI-2 (IEEE, 2015).

    Google Scholar 

  54. Schlechtweg, M. Multifunctional circuits and modules based on III/V mHEMT technology for (sub-)millimeter-wave applications in space, communication and sensing. In IEEE Int. Microwave Symp. (IMS2015) Workshop WSI-6 (IEEE, 2015).

    Google Scholar 

  55. Pfeiffer, U. RF front-ends for mm-wave and THz application in SiGe/CMOS. In IEEE Int. Microwave Symp. (IMS2015) Workshop WSI-5 (IEEE, 2015).

    Google Scholar 

  56. Zhao, Y., Ojefors, E., Aufinger, K., Meister, T. F. & Pfeiffer, U. R. A 160 GHz subharmonic transmitter and receiver chipset in an SiGe HBT technology. IEEE Trans. Microw. Theory Tech. 60, 3286–3299 (2012).

    Article  ADS  Google Scholar 

  57. Fujishima, M., Amakawa, S., Takano, K., Katayama, K. & Yoshida, T. Terahertz CMOS design for low-power and high-speed wireless communication. IEICE Trans. Electron. E98-C, 1091–1104 (2015).

    Article  ADS  Google Scholar 

  58. Sengupta, K. & Hajimiri, A. A 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators. IEEE J. Solid-State Circuits 47, 3013–3031 (2012).

    Article  ADS  Google Scholar 

  59. Han, R. & Afshari, E. A CMOS high-power broadband 260-GHz radiator array for spectroscopy. IEEE J. Solid-State Circuits 48, 3090–3104 (2013).

    Article  ADS  Google Scholar 

  60. Kallfass, I. et al. 64 Gbit/s transmission over 850 m fixed wireless link at 240 GHz carrier frequency. J. Infrared Milli. Terahz Waves 36, 221–233 (2015).

    Article  Google Scholar 

  61. Ducournau, G. et al. 32 Gbit/s QPSK transmission at 385 GHz using coherent fibre-optic technologies and THz double heterodyne detection. Electron. Lett. 12, 915–917 (2015).

    Article  Google Scholar 

  62. Yu, X. et al. 60 Gbit/s 400 GHz wireless transmission. In Int. Conf. on Photonics in Switching (PS2015) 4–6 (IEEE, 2015).

    Google Scholar 

  63. Moeller, L., Federici, J. & Su, K. 2.5Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source. Electron. Lett. 47, 856–858 (2011).

    Article  Google Scholar 

  64. Wang, C. et al. 0.34-THz wireless link based on high-order modulation for future wireless local area network applications. IEEE Trans. Terahz Sci. Technol. 4, 75–85 (2014).

    Article  ADS  Google Scholar 

  65. Bennett, G. & Melle, S. Superchannels, flex-grid, multilayer switching key developments for next-gen transport networks. Lightwave http://go.nature.com/7EISV5 (2013).

  66. Winzer, P. J. & Essiambre, R. Advanced optical modulation formats. Proc. IEEE 94, 952–985 (2006).

    Article  Google Scholar 

  67. Crowe, T. W. et al. GaAs Schottky diodes for THz mixing applications. Proc. IEEE 80, 1827–1841 (1992).

    Article  ADS  Google Scholar 

  68. Nicholas, C. E. B. & Currie, C. Principles and Applications of Millimetre Wave Radar (Artech House, 1987).

    Google Scholar 

  69. Maher, R., Alvarado, A., Lavery, D. & Bayvel, P. Increasing the information rates of optical communications via coded modulation: a study of transceiver performance. Sci. Rep. 6, 21278 (2016).

    Article  ADS  Google Scholar 

  70. Martiskainen, M. & Coburn, J. The role of information and communication technologies (ICTs) in household energy consumption-prospects for the UK. Energy Efficiency 4, 209–221 (2011).

    Article  Google Scholar 

  71. Smit, M. et al. Generic foundry model for InP-based photonics. IET Optoelectron. 5, 187–194 (2011).

    Article  Google Scholar 

  72. Balakier, K. et al. Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz. Opt. Express 22, 29404–29412 (2014).

    Article  ADS  Google Scholar 

  73. van Dijk, F. et al. Integrated InP heterodyne millimeter wave transmitter. IEEE Photon. Technol. Lett. 26, 965–968 (2014).

    Article  ADS  Google Scholar 

  74. Carpintero, G. et al. Microwave photonic integrated circuits for millimeter-wave wireless communications. IEEE J. Lightwave Technol. 32, 3495–3501 (2014).

    Article  ADS  Google Scholar 

  75. Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quant. Electron. 19, 6100117 (2013).

    Article  ADS  Google Scholar 

  76. Baets, R. et al. Integration of photonic functions in and with silicon. In 34th European Solid-State Device Res. Conf. (ESSDERC2004) 57–62 (IEEE, 2004).

    Google Scholar 

  77. Duan, G. H. et al. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quant. Electron. 20, 6100213 (2014).

    Google Scholar 

  78. Lee, A. D. et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J. Sel. Top. Quant. Electron. 19, 1901107 (2013).

    Article  ADS  Google Scholar 

  79. Beling, A. et al. InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation. Opt. Express 21, 25901–25906 (2013).

    Article  ADS  Google Scholar 

  80. Eriksson, K., Darwazeh, I. & Zirath, H. InP DHBT distributed amplifiers with up to 235-GHz bandwidth. IEEE Trans. Microw. Theory Tech. 63, 1334–1341 (2015).

    Article  ADS  Google Scholar 

  81. Umezawa, T. et al. High conversion gain, low power consumption W-band photoreceiver integrated with UTC-PD and InP-PHEMT amplifier. In IEEE Topical Meeting in Microwave Photonics TuC-3 (IEEE, 2015).

    Google Scholar 

  82. Ito, H. et al. Pre-amplifier integrated uni-travelling carrier photodiode module for operation in 120 GHz band. Electron. Lett. 41, 360–362 (2005).

    Article  Google Scholar 

  83. Kashio, N. et al. Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth. IEEE Trans. Electron Dev. 54, 1651–1657 (2007).

    Article  ADS  Google Scholar 

  84. Mitrofanov, O., Tan, T., Mark, P. R., Bowden, B. & Harrington, J. A. Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy. Appl. Phys. Lett. 94, 171104 (2009).

    Article  ADS  Google Scholar 

  85. Tsuruda, K., Fujita, M. & Nagatsuma, T. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab. Opt. Express 23, 250727 (2015).

    Article  Google Scholar 

  86. Zhan, H., Mendis, R. & Mittleman, D. M. Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides. Opt. Express 18, 9643–9650 (2010).

    Article  ADS  Google Scholar 

  87. Withayachumnankul, W. & Abbott, D. Metamaterials in the terahertz regime. IEEE Photon. J. 1, 99–118 (2009).

    Article  ADS  Google Scholar 

  88. Savo, S., Shrekenhamer, D. & Padilla, W. J. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater. 2, 275–279 (2014).

    Article  Google Scholar 

  89. Zhang, Y. et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett. 15, 3501–3506 (2015).

    Article  ADS  Google Scholar 

  90. Abbas, A., Karabiyik, M. & Pala, N. Graphene-based field-effect transistor structures for terahertz applications. Proc. SPIE 8363, 83630S (2012).

    Article  ADS  Google Scholar 

  91. Tong, J. Y., Muthee, M., Chen, S. Y., Yngvesson, S. K. & Yan, J. Antenna enhanced graphene THz emitter and detector. Nano Lett. 15, 5295–5301 (2015).

    Article  ADS  Google Scholar 

  92. Liu, P. Q. et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nature Commun. 6, 8969 (2015).

    Article  ADS  Google Scholar 

  93. Mittendorff, M. et al., Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 103, 021113 (2013).

    Article  ADS  Google Scholar 

  94. Knap, W. et al. Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl. Phys. Lett. 80, 3433–3435 (2010).

    Article  ADS  Google Scholar 

  95. Otsuji, T. Trends in the research of modern terahertz detectors: plasmon detectors. IEEE Trans. Terahz Sci. Technol. 5, 1110–1120 (2015).

    Google Scholar 

  96. Tohme, L. et al. Terahertz wireless communication using GaAs transistors as detectors. Electron. Lett. 50, 323–325 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

T.N. acknowledges the Ministry of Internal Affairs and Communications (MIC) Japan for funding the Strategic Information and Communications R&D Promotion Programme (SCOPE), and the Japan Science and Technology Agency (JST) for funding the Industry-Academia Collaborative R&D Program. G.D. gratefully acknowledges the French Agence Nationale de la Recherche (ANR) for funding the COM'TONIQ 'Infra' 2013 programme on THz communications, through the grant ANR-13-INFR-0011-01, and the support from several French research programmes and institutes: Lille University, IEMN institute (RF/MEMS Characterization Center, Nanofab and Telecom platforms, IRCICA), the CNRS and by the French RENATECH network. This work was also partly supported by the French 'Programmes d'investissement d'avenir' Equipex FLUX 0017, ExCELSiOR project and the Nord-Pas de Calais Regional council and the FEDER through the CPER 'Photonics for Society'. Some of the work was also supported by a IEMN-Lille University-Tektronix academic-industrial partnership on THz communications. C.R. acknowledges the UK Engineering and Physical Science Research Council for its funding of the programme grant on 'Coherent Terahertz Systems' and the European Commission for its support of the IPHOBAC-NG project and FiWin5G Marie Curie ITN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadao Nagatsuma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagatsuma, T., Ducournau, G. & Renaud, C. Advances in terahertz communications accelerated by photonics. Nature Photon 10, 371–379 (2016). https://doi.org/10.1038/nphoton.2016.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.65

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing