Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics


Optical frequency conversion has applications ranging from tunable light sources to telecommunications-band interfaces for quantum information science. Here, we demonstrate efficient, low-noise frequency conversion on a nanophotonic chip through four-wave-mixing Bragg scattering in compact (footprint <0.5 × 10–4 cm2) Si3N4 microring resonators. We investigate three frequency conversion configurations: spectral translation over a few nanometres within the 980 nm band; upconversion from 1,550 nm to 980 nm; and downconversion from 980 nm to 1,550 nm. With conversion efficiencies ranging from 25% for the first process to >60% for the last two processes, a signal conversion bandwidth of >1 GHz, a required continuous-wave pump power of <60 mW and background noise levels between a few femtowatts and a few picowatts, these devices are suitable for quantum frequency conversion of single-photon states from InAs/GaAs quantum dots. Simulations based on coupled mode equations and the Lugiato–Lefever equation are used to model device performance, and show quantitative agreement with measurements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Principle of operation and device geometry.
Figure 2: Device design, dispersion and coupling characterization.
Figure 3: 980 nm intraband frequency conversion.
Figure 4: Numerical simulations and SNR measurement for 980 nm intraband conversion.
Figure 5: Wideband frequency conversion interface to the telecommunications band.
Figure 6: Wideband frequency downconversion bandwidth and background noise measurement.


  1. 1

    Boyd, R. W. Nonlinear Optics (Academic, 2003).

    Google Scholar 

  2. 2

    Agrawal, G. P. Nonlinear Fiber Optics (Academic, 2007).

    Google Scholar 

  3. 3

    Langrock, C. et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled linbo3 waveguides. Opt. Lett. 30, 1725–1727 (2005).

    ADS  Article  Google Scholar 

  4. 4

    Gnauck, A. H., Jopson, R., McKinstrie, C., Centanni, J. & Radic, S. Demonstration of low-noise frequency conversion by Bragg scattering in a fiber. Opt. Express 14, 8989–8994 (2006).

    ADS  Article  Google Scholar 

  5. 5

    Kumar, P. Quantum frequency-conversion. Opt. Lett. 15, 1476–1478 (1990).

    ADS  Article  Google Scholar 

  6. 6

    Raymer, M. G. & Srinivasan, K. Manipulating the color and shape of single photons. Phys. Today 65, 32–37 (November 2012).

    Article  Google Scholar 

  7. 7

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nature Photon. 7, 597–607 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    ADS  Article  Google Scholar 

  9. 9

    Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson, M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Liu, X., Osgood, R. M., Vlasov, Y. A. & Green, W. M. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 557–560 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Zlatanovic, S. et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photon. 4, 561–564 (2010).

    ADS  Article  Google Scholar 

  15. 15

    McKinstrie, C., Yu, M., Raymer, M. & Radic, S. Quantum noise properties of parametric processes. Opt. Express 13, 4986–5012 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Marhic, M. E., Yang, F., Kazovsky, L. & Park, Y. Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers. Opt. Lett. 21, 1906–1908 (1996).

    ADS  Article  Google Scholar 

  17. 17

    Uesaka, K., Kin-Yip, K., Marhic, M. E. & Kazovsky, L. Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments. IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).

    ADS  Article  Google Scholar 

  18. 18

    McKinstrie, C., Harvey, J., Radic, S. & Raymer, M. Translation of quantum states by four-wave mixing in fibers. Opt. Express 13, 9131–9142 (2005).

    ADS  Article  Google Scholar 

  19. 19

    Lefrancois, S., Clark, A. S. & Eggleton, B. J. Optimizing optical Bragg scattering for single-photon frequency conversion. Phys. Rev. A 91, 013837 (2015).

    ADS  Article  Google Scholar 

  20. 20

    Agha, I., Davanço, M., Thurston, B. & Srinivasan, K. Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in sin x waveguides. Opt. Lett. 37, 2997–2999 (2012).

    ADS  Article  Google Scholar 

  21. 21

    Agha, I., Ates, S., Davanço, M. & Srinivasan, K. A chip-scale, telecommunications-band frequency conversion interface for quantum emitters. Opt. Express 21, 21628–21638 (2013).

    ADS  Article  Google Scholar 

  22. 22

    Huang, Y., Velev, V. & Kumar, P. Quantum frequency conversion in nonlinear microcavities. Opt. Lett. 38, 2119–2121 (2013).

    ADS  Article  Google Scholar 

  23. 23

    Lin, Z., Johnson, S. G., Rodriguez, A. W. & Loncar, M. Design of diamond microcavities for single photon frequency down-conversion. Opt. Express 23, 25279–25294 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Ates, S. et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012).

    ADS  Article  Google Scholar 

  25. 25

    McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

    ADS  Article  Google Scholar 

  26. 26

    Clark, A. S., Shahnia, S., Collins, M. J., Xiong, C. & Eggleton, B. J. High-efficiency frequency conversion in the single-photon regime. Opt. Lett. 38, 947–949 (2013).

    ADS  Article  Google Scholar 

  27. 27

    Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon. 5, 770–776 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29

    Chin, M. & Ho, S. Design and modeling of waveguide-coupled single-mode microring resonators. J. Lightw. Technol. 16, 1433–1446 (1998).

    ADS  Article  Google Scholar 

  30. 30

    Shah Hosseini, E., Yegnanarayanan, S., Atabaki, A. H., Soltani, M. & Adibi, A. Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths. Opt. Express 18, 2127–2136 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Spencer, D. T., Bauters, J. F., Heck, M. J. & Bowers, J. E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014).

    ADS  Article  Google Scholar 

  32. 32

    Carmon, T., Yang, L. & Vahala, K. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    ADS  Article  Google Scholar 

  33. 33

    Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Hansson, T. & Wabnitz, S. Bichromatically pumped microresonator frequency combs. Phys. Rev. A 90, 013811 (2014).

    ADS  Article  Google Scholar 

  35. 35

    Matsko, A. B., Savchenkov, A. A., Strekalov, D., Ilchenko, V. S. & Maleki, L. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A 71, 033804 (2005).

    ADS  Article  Google Scholar 

  36. 36

    Chembo, Y. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010).

    ADS  Article  Google Scholar 

  37. 37

    Hansson, T., Modotto, D. & Wabnitz, S. On the numerical simulation of Kerr frequency combs using coupled mode equations. Opt. Commun. 312, 134–136 (2013).

    ADS  Article  Google Scholar 

  38. 38

    Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    ADS  Article  Google Scholar 

  39. 39

    Michler, P. Single Semiconductor Quantum Dots (Springer, 2009).

    Google Scholar 

  40. 40

    Ates, S. et al. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation. Sci. Rep. 3, 1397 (2013).

    Article  Google Scholar 

  41. 41

    Dutt, A. et al. On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015).

    ADS  Article  Google Scholar 

  42. 42

    Ramelow, S. et al. Silicon-nitride platform for narrowband entangled photon generation. Preprint at http://arXiv:1508.04358 (2015).

  43. 43

    Reimer, C. et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nature Commun. 6, 8236 (2015).

    ADS  Article  Google Scholar 

  44. 44

    Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Optomechanical dark mode. Science 338, 1609–1613 (2012).

    ADS  Article  Google Scholar 

  45. 45

    Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nature Commun. 3, 1196 (2012).

    ADS  Article  Google Scholar 

  46. 46

    Liu, Y., Davanço, M., Aksyuk, V. & Srinivasan, K. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys. Rev. Lett. 110, 223603 (2013).

    ADS  Article  Google Scholar 

  47. 47

    Bader, M., Heugel, S., Chekhov, A. L., Sondermann, M. & Leuchs, G. Efficient coupling to an optical resonator by exploiting time-reversal symmetry. New J. Phys. 15, 123008 (2013).

    ADS  Article  Google Scholar 

  48. 48

    Liu, C. et al. Efficiently loading a single photon into a single-sided Fabry–Perot cavity. Phys. Rev. Lett. 113, 133601 (2014).

    ADS  Article  Google Scholar 

Download references


Q.L. acknowledges support under the Cooperative Research Agreement between the University of Maryland and NIST-CNST (award no. 70NANB10H193). The authors thank J. Liu for help with using the grating spectrometer for the noise measurement, L. Van Der Vegt from Yenista Optics for the loan of a 1,550 nm tunable filter and S. Papp from NIST Boulder for comments.

Author information




Q.L. led the design, fabrication and measurement, with assistance from M.D. and K.S. Q.L. and K.S. wrote the manuscript and K.S. supervised the project.

Corresponding authors

Correspondence to Qing Li or Kartik Srinivasan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2619 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nature Photon 10, 406–414 (2016). https://doi.org/10.1038/nphoton.2016.64

Download citation

Further reading