Few-photon coherent nonlinear optics with a single molecule

Abstract

The pioneering experiments in linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross-section of materials is very small1,2, macroscopic bulk samples and pulsed lasers are usually used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles3,4,5 or small atomic ensembles6,7,8 with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield9. Here, we report the coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination and the switching of a laser beam by on the order of ten pump photons. The sharp molecular transitions and efficient photon–molecule coupling at a tight focus10 allow for optical switching with less than a handful of pump photons and are thus promising for applications in quantum engineering11.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Resonant and near-resonant pump–probe spectroscopy.
Figure 3: Four-wave mixing.
Figure 4: Time-domain measurements.
Figure 5: Few-photon switching.

References

  1. 1

    Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1999).

  2. 2

    Boyd, R. W. Nonlinear Optics (Academic, 2008).

  3. 3

    Dadap, J. I., Shan, J., Eisenthal, K. B. & Heinz, T. F. Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 83, 4045–4048 (1999).

  4. 4

    Brasselet, S. et al. In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy. Phys. Rev. Lett. 92, 207401 (2004).

  5. 5

    Horneber, A. et al. Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution. Phys. Chem. Chem. Phys. 17, 21288–21293 (2015).

  6. 6

    Wu, F. Y., Ezekiel, S., Ducloy, M. & Mollow, B. R. Observation of amplification in a strongly driven two-level atomic system at optical frequencies. Phys. Rev. Lett. 38, 1077–1080 (1977).

  7. 7

    Gruneisen, M. T., Donald, K. R. M., Gaeta, A. L., Boyd, R. W. & Harter, D. J. Energy transfer between laser beams propagating through an atomic vapor. Phys. Rev. A. 40, 3464–3467 (1989).

  8. 8

    Papademetriou, S., Chakmakjian, S. & Stroud, C. R. Optical subharmonic Rabi resonances. J. Opt. Soc. Am. B. 9, 1182–1188 (1992).

  9. 9

    Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

  10. 10

    Zumofen, G., Mojarad, N. M., Sandoghdar, V. & Agio, M. Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008).

  11. 11

    Chang, D. E., Vuletic, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nature Photon. 8, 685–694 (2014).

  12. 12

    Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008).

  13. 13

    Jelezko, F., Lounis, B. & Orrit, M. Pump-probe spectroscopy and photophysical properties of single di-benzanthanthrene molecules in a naphthalene crystal. J. Chem. Phys. 107, 1662–1702 (1997).

  14. 14

    Mollow, B. R. Stimulated emission and absorption near resonance for driven systems. Phys. Rev. A 5, 2217–2222 (1972).

  15. 15

    Haroche, S. & Hartmann, F. Theory of saturated-absorption line shapes. Phys. Rev. A 6, 1280–1300 (1972).

  16. 16

    Boyd, R. W., Raymer, M. G., Narum, P. & Harter, D. J. Four-wave parametric interactions in a strongly driven two-level system. Phys. Rev. A 24, 411–423 (1981).

  17. 17

    Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

  18. 18

    Lounis, B., Jelezko, F. & Orrit, M. Single molecules driven by strong resonant fields: hyper-Raman and subharmonic resonances. Phys. Rev. Lett. 78, 3673–3676 (1997).

  19. 19

    Grynberg, G. & Cohen-Tannoudji, C. Central resonance of the Mollow absorption spectrum: physical origin of gain without population inversion. Opt. Comm. 96, 150–163 (1993).

  20. 20

    Gerhardt, I. et al. Coherent state preparation and observation of Rabi oscillations in a single molecule. Phys. Rev. A. 79, 011402(R) (2009).

  21. 21

    Wrigge, G., Hwang, J., Gerhardt, I., Zumofen, G. & Sandoghdar, V. Exploring the limits of single emitter detection in fluorescence and extinction. Opt. Express 16, 17358–17365 (2008).

  22. 22

    Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

  23. 23

    Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

  24. 24

    Mertz, J., Xu, C. & Webb, W. W. Single-molecule detection by two-photon-excited fluorescence. Opt. Lett. 20, 2532–2534 (1995).

  25. 25

    Bopp, M. A., Jia, Y., Haran, G., Morlino, E. A. & Hochstrassera, R. M. Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions. Appl. Phys. Lett. 73, 7–9 (1998).

  26. 26

    Plakhotnik, T., Walser, D., Pirotta, M., Renn, A. & Wild, U. P. Nonlinear spectroscopy on a single quantum system: two-photon absorption of a single molecule. Science 271, 1703–1705 (1996).

  27. 27

    Chong, S., Min, W. & Xie, X. S. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010).

  28. 28

    Brinks, D. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010).

  29. 29

    Aljunid, S. A. et al. Phase shift of a weak coherent beam induced by a single atom. Phys. Rev. Lett. 103, 153601 (2009).

  30. 30

    Fischer, M. et al. Efficient saturation of an ion in free space. Appl. Phys. B 117, 797–801 (2014).

  31. 31

    Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nature Commun. 5, 3627 (2014).

  32. 32

    Eichhammer, E., Utikal, T., Götzinger, S. & Sandoghdar, V. High-resolution spectroscopy of single Pr3+ ions on the 3H4 − 1D2 transition. New J. Phys 17, 083018 (2015).

  33. 33

    Peiris, M., Konthasinghe, K., Yu, Y., Niu, Z. C. & Muller, A. Bichromatic resonant light scattering from a quantum dot. Phys. Rev. B 89, 155305 (2014).

  34. 34

    Javadi, A. et al. Single-photon nonlinear optics with a quantum dot in a waveguide. Nature Commun. 6, 8655 (2015).

  35. 35

    Kelkar, H. et al. A sub-λ3-volume cantilever-based Fabry-Pérot cavity. Phys. Rev. Appl. 4, 054010 (2015).

  36. 36

    Mawatari, K. et al. Extended-Nanofluidic Systems for Chemistry and Biotechnology (Imperial College Press, 2012).

  37. 37

    Faez, S., Türschmann, P., Haakh, H. R., Götzinger, S. & Sandoghdar, V. Coherent interaction of light and single molecules in a dielectric nanoguide. Phys. Rev. Lett. 113, 213601 (2014).

  38. 38

    Pototschnig, M. et al. Controlling the phase of a light beam with a single molecule. Phys. Rev. Lett. 107, 063001 (2011).

  39. 39

    Loudon, R. Quantum Theory of Light (Oxford Univ. Press, 2000).

Download references

Acknowledgements

This work was financed by the Max Planck Society, an Alexander von Humboldt professorship and the European Research Council Advanced Grant (SINGLEION). We acknowledge helpful discussions with D. Martin-Cano. V.S. thanks B. Lounis for fruitful discussions in the very early stages of this work.

Author information

A.M. and B.G. performed the experiments and analysed the data. V.S. conceived the project. V.S., S.G. and T.U. supervised the experiments. All authors discussed the results. A.M., B.G. and V.S. wrote the manuscript.

Correspondence to Vahid Sandoghdar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maser, A., Gmeiner, B., Utikal, T. et al. Few-photon coherent nonlinear optics with a single molecule. Nature Photon 10, 450–453 (2016). https://doi.org/10.1038/nphoton.2016.63

Download citation

Further reading