Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Few-photon coherent nonlinear optics with a single molecule


The pioneering experiments in linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross-section of materials is very small1,2, macroscopic bulk samples and pulsed lasers are usually used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles3,4,5 or small atomic ensembles6,7,8 with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield9. Here, we report the coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination and the switching of a laser beam by on the order of ten pump photons. The sharp molecular transitions and efficient photon–molecule coupling at a tight focus10 allow for optical switching with less than a handful of pump photons and are thus promising for applications in quantum engineering11.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Resonant and near-resonant pump–probe spectroscopy.
Figure 3: Four-wave mixing.
Figure 4: Time-domain measurements.
Figure 5: Few-photon switching.


  1. 1

    Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1999).

    Google Scholar 

  2. 2

    Boyd, R. W. Nonlinear Optics (Academic, 2008).

    Google Scholar 

  3. 3

    Dadap, J. I., Shan, J., Eisenthal, K. B. & Heinz, T. F. Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 83, 4045–4048 (1999).

    ADS  Article  Google Scholar 

  4. 4

    Brasselet, S. et al. In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy. Phys. Rev. Lett. 92, 207401 (2004).

    ADS  Article  Google Scholar 

  5. 5

    Horneber, A. et al. Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution. Phys. Chem. Chem. Phys. 17, 21288–21293 (2015).

    Article  Google Scholar 

  6. 6

    Wu, F. Y., Ezekiel, S., Ducloy, M. & Mollow, B. R. Observation of amplification in a strongly driven two-level atomic system at optical frequencies. Phys. Rev. Lett. 38, 1077–1080 (1977).

    ADS  Article  Google Scholar 

  7. 7

    Gruneisen, M. T., Donald, K. R. M., Gaeta, A. L., Boyd, R. W. & Harter, D. J. Energy transfer between laser beams propagating through an atomic vapor. Phys. Rev. A. 40, 3464–3467 (1989).

    ADS  Article  Google Scholar 

  8. 8

    Papademetriou, S., Chakmakjian, S. & Stroud, C. R. Optical subharmonic Rabi resonances. J. Opt. Soc. Am. B. 9, 1182–1188 (1992).

    ADS  Article  Google Scholar 

  9. 9

    Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Zumofen, G., Mojarad, N. M., Sandoghdar, V. & Agio, M. Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Chang, D. E., Vuletic, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nature Photon. 8, 685–694 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Jelezko, F., Lounis, B. & Orrit, M. Pump-probe spectroscopy and photophysical properties of single di-benzanthanthrene molecules in a naphthalene crystal. J. Chem. Phys. 107, 1662–1702 (1997).

    ADS  Article  Google Scholar 

  14. 14

    Mollow, B. R. Stimulated emission and absorption near resonance for driven systems. Phys. Rev. A 5, 2217–2222 (1972).

    ADS  Article  Google Scholar 

  15. 15

    Haroche, S. & Hartmann, F. Theory of saturated-absorption line shapes. Phys. Rev. A 6, 1280–1300 (1972).

    ADS  Article  Google Scholar 

  16. 16

    Boyd, R. W., Raymer, M. G., Narum, P. & Harter, D. J. Four-wave parametric interactions in a strongly driven two-level system. Phys. Rev. A 24, 411–423 (1981).

    ADS  Article  Google Scholar 

  17. 17

    Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

    ADS  Article  Google Scholar 

  18. 18

    Lounis, B., Jelezko, F. & Orrit, M. Single molecules driven by strong resonant fields: hyper-Raman and subharmonic resonances. Phys. Rev. Lett. 78, 3673–3676 (1997).

    ADS  Article  Google Scholar 

  19. 19

    Grynberg, G. & Cohen-Tannoudji, C. Central resonance of the Mollow absorption spectrum: physical origin of gain without population inversion. Opt. Comm. 96, 150–163 (1993).

    ADS  Article  Google Scholar 

  20. 20

    Gerhardt, I. et al. Coherent state preparation and observation of Rabi oscillations in a single molecule. Phys. Rev. A. 79, 011402(R) (2009).

    ADS  Article  Google Scholar 

  21. 21

    Wrigge, G., Hwang, J., Gerhardt, I., Zumofen, G. & Sandoghdar, V. Exploring the limits of single emitter detection in fluorescence and extinction. Opt. Express 16, 17358–17365 (2008).

    ADS  Article  Google Scholar 

  22. 22

    Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    ADS  Article  Google Scholar 

  23. 23

    Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    ADS  Article  Google Scholar 

  24. 24

    Mertz, J., Xu, C. & Webb, W. W. Single-molecule detection by two-photon-excited fluorescence. Opt. Lett. 20, 2532–2534 (1995).

    ADS  Article  Google Scholar 

  25. 25

    Bopp, M. A., Jia, Y., Haran, G., Morlino, E. A. & Hochstrassera, R. M. Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions. Appl. Phys. Lett. 73, 7–9 (1998).

    ADS  Article  Google Scholar 

  26. 26

    Plakhotnik, T., Walser, D., Pirotta, M., Renn, A. & Wild, U. P. Nonlinear spectroscopy on a single quantum system: two-photon absorption of a single molecule. Science 271, 1703–1705 (1996).

    ADS  Article  Google Scholar 

  27. 27

    Chong, S., Min, W. & Xie, X. S. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010).

    Article  Google Scholar 

  28. 28

    Brinks, D. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010).

    ADS  Article  Google Scholar 

  29. 29

    Aljunid, S. A. et al. Phase shift of a weak coherent beam induced by a single atom. Phys. Rev. Lett. 103, 153601 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Fischer, M. et al. Efficient saturation of an ion in free space. Appl. Phys. B 117, 797–801 (2014).

    ADS  Article  Google Scholar 

  31. 31

    Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nature Commun. 5, 3627 (2014).

    ADS  Article  Google Scholar 

  32. 32

    Eichhammer, E., Utikal, T., Götzinger, S. & Sandoghdar, V. High-resolution spectroscopy of single Pr3+ ions on the 3H4 − 1D2 transition. New J. Phys 17, 083018 (2015).

    ADS  Article  Google Scholar 

  33. 33

    Peiris, M., Konthasinghe, K., Yu, Y., Niu, Z. C. & Muller, A. Bichromatic resonant light scattering from a quantum dot. Phys. Rev. B 89, 155305 (2014).

    ADS  Article  Google Scholar 

  34. 34

    Javadi, A. et al. Single-photon nonlinear optics with a quantum dot in a waveguide. Nature Commun. 6, 8655 (2015).

    ADS  Article  Google Scholar 

  35. 35

    Kelkar, H. et al. A sub-λ3-volume cantilever-based Fabry-Pérot cavity. Phys. Rev. Appl. 4, 054010 (2015).

    ADS  Article  Google Scholar 

  36. 36

    Mawatari, K. et al. Extended-Nanofluidic Systems for Chemistry and Biotechnology (Imperial College Press, 2012).

    Book  Google Scholar 

  37. 37

    Faez, S., Türschmann, P., Haakh, H. R., Götzinger, S. & Sandoghdar, V. Coherent interaction of light and single molecules in a dielectric nanoguide. Phys. Rev. Lett. 113, 213601 (2014).

    ADS  Article  Google Scholar 

  38. 38

    Pototschnig, M. et al. Controlling the phase of a light beam with a single molecule. Phys. Rev. Lett. 107, 063001 (2011).

    ADS  Article  Google Scholar 

  39. 39

    Loudon, R. Quantum Theory of Light (Oxford Univ. Press, 2000).

Download references


This work was financed by the Max Planck Society, an Alexander von Humboldt professorship and the European Research Council Advanced Grant (SINGLEION). We acknowledge helpful discussions with D. Martin-Cano. V.S. thanks B. Lounis for fruitful discussions in the very early stages of this work.

Author information




A.M. and B.G. performed the experiments and analysed the data. V.S. conceived the project. V.S., S.G. and T.U. supervised the experiments. All authors discussed the results. A.M., B.G. and V.S. wrote the manuscript.

Corresponding author

Correspondence to Vahid Sandoghdar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maser, A., Gmeiner, B., Utikal, T. et al. Few-photon coherent nonlinear optics with a single molecule. Nature Photon 10, 450–453 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing