Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Perovskite photonic sources

Abstract

The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V−1 s−1, free-carrier densities greater than 1017 cm−3 and gain coefficients exceeding 104 cm−1. Solid-state perovskites are — in addition to galvanizing the field of solar electricity — showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Perovskite structure and emission spectrum.
Figure 2: Perovskite light-emitting diodes.
Figure 3: Perovskite optical amplification.
Figure 4: Electrically injected lasing and resistive heating under current.

References

  1. 1

    Park, N.-G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

    Article  Google Scholar 

  2. 2

    Kim, H.-S., Im, S. H. & Park, N.-G. Organolead halide perovskite: new horizons in solar cell research. J. Phys. Chem. C 118, 5615–5625 (2014).

    Article  Google Scholar 

  3. 3

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature Photon. 8, 506–514 (2014).

    Article  ADS  Google Scholar 

  4. 4

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotech. 10, 391–402 (2015).

    Article  ADS  Google Scholar 

  5. 5

    Kitazawa, N., Watanabe, Y. & Nakamura, Y. Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. J. Mater. Sci. 37, 3585–3587 (2002).

    Article  ADS  Google Scholar 

  6. 6

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  7. 7

    Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  8. 8

    Leijtens, T. et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8, 7147–7155 (2014).

    Article  Google Scholar 

  9. 9

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  10. 10

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  11. 11

    Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  12. 12

    Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Article  ADS  Google Scholar 

  13. 13

    Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

    Article  ADS  Google Scholar 

  14. 14

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  15. 15

    Hardin, B. E., Snaith, H. J. & McGehee, M. D. The renaissance of dye-sensitized solar cells. Nature Photon. 6, 162–169 (2012).

    Article  ADS  Google Scholar 

  16. 16

    Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photon. 6, 153–161 (2012).

    Article  ADS  Google Scholar 

  17. 17

    Kramer, I. J. & Sargent, E. H. The architecture of colloidal quantum dot solar cells: materials to devices. Chem. Rev. 114, 863–882 (2013).

    Article  Google Scholar 

  18. 18

    Suryawanshi, M. P. et al. CZTS based thin film solar cells: a status review. Mater. Sci. Technol. 28, 98–109 (2013).

    Article  Google Scholar 

  19. 19

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  Google Scholar 

  20. 20

    Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013).

    Article  ADS  Google Scholar 

  21. 21

    Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  ADS  Google Scholar 

  22. 22

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  Google Scholar 

  23. 23

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  Google Scholar 

  24. 24

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  ADS  Google Scholar 

  25. 25

    Research Cell Efficiency Records http://www.nrel.gov/ncpv (National Renewable Energy Laboratory, accessed 1 April 2016).

  26. 26

    Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photon. 8, 489–494 (2014).

    Article  ADS  Google Scholar 

  27. 27

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  Google Scholar 

  28. 28

    Swarnkar, A. et al. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. 127, 15644–15648 (2015).

    Article  Google Scholar 

  29. 29

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  Google Scholar 

  30. 30

    Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  31. 31

    Adinolfi, V. et al. The in-gap electronic state spectrum of methylammonium lead iodide single crystal perovskites. Adv. Mater. http://dx.doi.org/10.1002/adma.201505162 (2016).

  32. 32

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Mater. 14, 636–642 (2015).

    Article  ADS  Google Scholar 

  33. 33

    Era, M., Morimoto, S., Tsutsui, T. & Saito, S. Organic–inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 . Appl. Phys. Lett. 65, 676–678 (1994).

    Article  ADS  Google Scholar 

  34. 34

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. Photovolt. IEEE J. 2, 303–311 (2012).

    Article  Google Scholar 

  35. 35

    Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).

    Article  Google Scholar 

  36. 36

    Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  ADS  Google Scholar 

  37. 37

    Aizawa, N. et al. Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. Nature Commun. 5, 5756 (2014).

    Article  ADS  Google Scholar 

  38. 38

    Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  ADS  Google Scholar 

  39. 39

    Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nature Photon. 10, 253–257 (2016).

    Article  ADS  Google Scholar 

  40. 40

    Kumawat, N. K. et al. Band gap tuning of CH3NH3Pb(Br1– x Clx)3 hybrid perovskite for blue electroluminescence. ACS Appl. Mater. Interfaces 7, 13119–13124 (2015).

    Article  Google Scholar 

  41. 41

    Sadhanala, A. et al. Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15, 6095–6101 (2015).

    Article  ADS  Google Scholar 

  42. 42

    Comin, R. et al. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. J. Mater. Chem. C 3, 8839–8843 (2015).

    Article  Google Scholar 

  43. 43

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  44. 44

    Yangui, A. et al. Optical investigation of broadband white-light emission in self-assembled organic–inorganic perovskite (C6H11NH3)2PbBr4 . J. Phys. Chem. C 119, 23638–23647 (2015).

    Article  Google Scholar 

  45. 45

    Pathak, S. et al. Perovskite crystals for tunable white light emission. Chem. Mater. 27, 8066–8075 (2015).

    Article  Google Scholar 

  46. 46

    Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Phys. 11, 582–587 (2015).

    Article  ADS  Google Scholar 

  47. 47

    Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    Article  Google Scholar 

  48. 48

    Zheng, K. et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 6, 2969–2975 (2015).

    Article  Google Scholar 

  49. 49

    Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    Article  Google Scholar 

  50. 50

    Zhang, X. et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16, 1415–1420 (2016).

    Article  ADS  Google Scholar 

  51. 51

    Jaramillo-Quintero, O. A., Sanchez, R. S., Rincon, M. & Mora-Sero, I. Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer. J. Phys. Chem. Lett. 6, 1883–1890 (2015).

    Article  Google Scholar 

  52. 52

    Sutherland, B. R. et al. Perovskite thin films via atomic layer deposition. Adv. Mater. 27, 53–58 (2015).

    Article  Google Scholar 

  53. 53

    Shaklee, K. L. Direct determination of optical gain in semiconductor crystals. Appl. Phys. Lett. 18, 475–477 (1971).

    Article  ADS  Google Scholar 

  54. 54

    Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. O. & Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014).

    Article  Google Scholar 

  55. 55

    D'Innocenzo, V., Srimath Kandada, A. R., De Bastiani, M., Gandini, M. & Petrozza, A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014).

    Article  Google Scholar 

  56. 56

    Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Commun. 6, 8056 (2015).

    Article  ADS  Google Scholar 

  57. 57

    Stranks, S. D. et al. Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector. Nano Lett. 15, 4935–4941 (2015).

    Article  ADS  Google Scholar 

  58. 58

    Xia, R., Heliotis, G. & Bradley, D. D. C. Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum. Appl. Phys. Lett. 82, 3599–3601 (2003).

    Article  ADS  Google Scholar 

  59. 59

    Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech. 7, 335–339 (2012).

    Article  ADS  Google Scholar 

  60. 60

    She, C. et al. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 14, 2772–2777 (2014).

    Article  ADS  Google Scholar 

  61. 61

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 10, 687–692 (2014).

    Google Scholar 

  62. 62

    Liao, Q. et al. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater. 27, 3405–3410 (2015).

    Article  Google Scholar 

  63. 63

    Dhanker, R. et al. Random lasing in organo-lead halide perovskite microcrystal networks. Appl. Phys. Lett. 105, 151112 (2014).

    Article  ADS  Google Scholar 

  64. 64

    Liu, S. et al. Random lasing actions in self-assembled perovskite nanoparticles. Preprint at http://arXiv.org/abs/1512.07377 (2015).

  65. 65

    Saliba, M. et al. Structured organic–inorganic perovskite toward a distributed feedback laser. Adv. Mater. 28, 923–929 (2016).

    Article  Google Scholar 

  66. 66

    Gu, Z. et al. Two-photon pumped lead halide perovskite nanowire lasers. Preprint at http://arXiv.org/abs/1510.03987v1 (2015).

  67. 67

    Xing, J. et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15, 4571–4577 (2015).

    Article  ADS  Google Scholar 

  68. 68

    Fu, Y. et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016).

    Article  ADS  Google Scholar 

  69. 69

    Wang, K. et al. Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation. Opt. Lett. 41, 555–558 (2016).

    Article  ADS  Google Scholar 

  70. 70

    Park, Y.-S., Bae, W. K., Baker, T., Lim, J. & Klimov, V. I. Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 15, 7319–7328 (2015).

    Article  ADS  Google Scholar 

  71. 71

    Suárez, I., Juárez-Pérez, E. J., Bisquert, J., Mora-Seró, I. & Martínez-Pastor, J. P. Polymer/perovskite amplifying waveguides for active hybrid silicon photonics. Adv. Mater. 27, 6157–6162 (2015).

    Article  Google Scholar 

  72. 72

    Li, Y. J. et al. Output coupling of perovskite lasers from embedded nanoscale plasmonic waveguides. J. Am. Chem. Soc. 138, 2122–2125 (2016).

    Article  Google Scholar 

  73. 73

    Wang, Y. et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 16, 448–453 (2016).

    Article  ADS  Google Scholar 

  74. 74

    Hu, F. et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 9, 12410–12416 (2015).

    Article  Google Scholar 

  75. 75

    Park, Y.-S., Guo, S., Makarov, N. S. & Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015).

    Article  Google Scholar 

  76. 76

    Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  ADS  Google Scholar 

  77. 77

    Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article  ADS  Google Scholar 

  78. 78

    Grivas, C. & Pollnau, M. Organic solid-state integrated amplifiers and lasers. Laser Photon. Rev. 6, 419–462 (2012).

    Article  ADS  Google Scholar 

  79. 79

    Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nature Nanotech. 9, 891–895 (2014).

    Article  ADS  Google Scholar 

  80. 80

    Cadelano, M. et al. Can trihalide lead perovskites support continuous wave lasing? Adv. Opt. Mater. 3, 1557–1564 (2015).

    Article  Google Scholar 

  81. 81

    Adachi, M. M. et al. Microsecond-sustained lasing from colloidal quantum dot solids. Nature Commun. 6, 8694 (2015).

    Article  ADS  Google Scholar 

  82. 82

    Yuan, F. et al. Electric field-modulated amplified spontaneous emission in organo-lead halide perovskite CH3NH3PbI3 . Appl. Phys. Lett. 107, 261106 (2015).

    Article  ADS  Google Scholar 

  83. 83

    Voinigescu, S. High-Frequency Integrated Circuits (Cambridge Univ. Press, 2013).

    Google Scholar 

  84. 84

    Morkoc, H. Handbook of Nitride Semiconductors and Devices Vol. 1 (Wiley-VCH, 2008).

    Google Scholar 

  85. 85

    Palankovski, V. & Quay, R. Analysis and Simulation of Heterostructure Devices (Springer, 2004).

    Google Scholar 

  86. 86

    Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nature Mater. 12, 410–415 (2013).

    Article  ADS  Google Scholar 

  87. 87

    Guo, Z. et al. Thermal conductivity of organic bulk heterojunction solar cells: an unusual binary mixing effect. Phys. Chem. Chem. Phys. 16, 26359–26364 (2014).

    Article  Google Scholar 

  88. 88

    Köhler, A. Organic semiconductors: no more breaks for electrons. Nature Mater. 11, 836–837 (2012).

    Article  ADS  Google Scholar 

  89. 89

    Yazdani, N., Bozyigit, D., Yarema, O., Yarema, M. & Wood, V. Hole mobility in nanocrystal solids as a function of constituent nanocrystal size. J. Phys. Chem. Lett. 5, 3522–3527 (2014).

    Article  Google Scholar 

  90. 90

    Pisoni, A. et al. Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3 . J. Phys. Chem. Lett. 5, 2488–2492 (2014).

    Article  Google Scholar 

  91. 91

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  ADS  Google Scholar 

  92. 92

    Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  ADS  Google Scholar 

  93. 93

    Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature Chem. 7, 703–711 (2015).

    Article  ADS  Google Scholar 

  94. 94

    Xu, J. et al. Crosslinked remote-doped hole-extracting contacts enhance stability under accelerated lifetime testing in perovskite solar cells. Adv. Mater. 28, 2807–2815 (2016).

    Article  Google Scholar 

  95. 95

    Serrano-Lujan, L. et al. Tin- and lead-based perovskite solar cells under scrutiny: an environmental perspective. Adv. Energy Mater. 5, 1501119 (2015).

    Article  Google Scholar 

  96. 96

    Kumawat, N. K., Dey, A., Narasimhan, K. L. & Kabra, D. Near infrared to visible electroluminescent diodes based on organometallic halide perovskites: structural and optical investigation. ACS Photon. 2, 349–354 (2015).

    Article  Google Scholar 

  97. 97

    Li, G. et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

    Article  ADS  Google Scholar 

  98. 98

    Ling, Y. et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28, 305–311 (2016).

    Article  Google Scholar 

  99. 99

    Yu, J. C., Kim, D. B., Jung, E. D., Lee, B. R. & Song, M. H. High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale 8, 7036–7042 (2016).

    Article  ADS  Google Scholar 

  100. 100

    Kim, Y.-H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Hoogland, O. Voznyy, D. Sellan, A. Jain, G. Walters and Z. Yang for helpful discussions throughout the writing of this manuscript. The authors acknowledge support from Toyota Motors Europe.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sutherland, B., Sargent, E. Perovskite photonic sources. Nature Photon 10, 295–302 (2016). https://doi.org/10.1038/nphoton.2016.62

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing