An efficient quantum light–matter interface with sub-second lifetime

Abstract

Quantum repeaters1 hold promise for scalable long-distance quantum communication. The basic building block is a quantum light–matter interface that generates non-classical correlations between light and a quantum memory2. Significant progress has been made in improving the performance of this interface3,4, but further development of quantum repeater is hindered by the difficulty of integrating the key capabilities into a single system4. Here we report a high-performance interface with an efficiency and lifetime that fulfil the requirement of a quantum repeater. By confining cold atoms with a three-dimensional optical lattice and enhancing the atom–photon coupling with a ring cavity, we observe an initial retrieval efficiency of 76 ± 5% together with a 1/e lifetime of 0.22 ± 0.01 s, which supports a sub-Hz entanglement distribution of up to 1,000 km through the Duan-Lukin-Cirac-Zoller (DLCZ) protocol2. Together with an efficient telecom interface5,6 and moderate multiplexing7, our result may enable a quantum repeater system that beats direct transmission in the near future4.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up and atomic levels.
Figure 2: Lifetime measurement of the optical lattice-trapped EIT memory without a cavity.
Figure 3: Millisecond-regime decay of the retrieval efficiency with DLCZ storage.
Figure 4: Intrinsic retrieval efficiency χ versus storage time for DLCZ storage.

References

  1. 1

    Briegel, H. J., Dur, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Article  Google Scholar 

  2. 2

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  3. 3

    Simon, C. et al. Quantum memories. Eur. Phys. J. D 58, 1–22 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    ADS  Article  Google Scholar 

  5. 5

    Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nature Phys. 6, 894–899 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Albrecht, B., Farrera, P., Fernandez-Gonzalvo, X., Cristiani, M. & de Riedmatten, H. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band. Nature Commun. 5, 3376 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Dai, H.-N. et al. Holographic storage of biphoton entanglement. Phys. Rev. Lett. 108, 210501 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  9. 9

    Gisin, N. How far can one send a photon? Front. Phys. 10, 100307 (2015).

    Article  Google Scholar 

  10. 10

    Korzh, B. et al. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nature Photon. 9, 163–168 (2015).

    ADS  Article  Google Scholar 

  11. 11

    Munro, W. J., Stephens, A. M., Devitt, S. J., Harrison, K. A. & Nemoto, K. Quantum communication without the necessity of quantum memories. Nature Photon. 6, 777–781 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M. D. & Jiang, L. Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nature Commun. 6, 6787 (2015).

    ADS  Article  Google Scholar 

  14. 14

    Schnorrberger, U. et al. Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Dudin, Y. O. et al. Entanglement of light-shift compensated atomic spin waves with telecom light. Phys. Rev. Lett. 105, 260502 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Dudin, Y. O., Li, L. & Kuzmich, A. Light storage on the time scale of a minute. Phys. Rev. A 87, 031801 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Simon, J., Tanji, H., Thompson, J. K. & Vuletić, V. Interfacing collective atomic excitations and single photons. Phys. Rev. Lett. 98, 183601 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Hosseini, M., Sparkes, B., Campbell, G., Lam, P. & Buchler, B. High efficiency coherent optical memory with warm rubidium vapour. Nature Commun. 2, 174 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Hosseini, M., Campbell, G., Sparkes, B. M., Lam, P. K. & Buchler, B. C. Unconditional room-temperature quantum memory. Nature Phys. 7, 794–798 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Chen, Y.-H. et al. Coherent optical memory with high storage efficiency and large fractional delay. Phys. Rev. Lett. 110, 083601 (2013).

    ADS  Article  Google Scholar 

  21. 21

    Bao, X.-H. et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nature Phys. 8, 517–521 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Lundblad, N., Schlosser, M. & Porto, J. V. Experimental observation of magic-wavelength behavior of 87Rb atoms in an optical lattice. Phys. Rev. A 81, 031611 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Dudin, Y. O., Zhao, R., Kennedy, T. A. B. & Kuzmich, A. Light storage in a magnetically dressed optical lattice. Phys. Rev. A 81, 041805 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Zhao, B. et al. A millisecond quantum memory for scalable quantum networks. Nature Phys. 5, 95–99 (2009).

    ADS  Article  Google Scholar 

  25. 25

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Article  Google Scholar 

  26. 26

    Zhao, R. et al. Long-lived quantum memory. Nature Phys. 5, 100–104 (2009).

    ADS  Article  Google Scholar 

  27. 27

    Yang, F., Mandel, T., Lutz, C., Yuan, Z.-S. & Pan, J.-W. Transverse mode revival of a light-compensated quantum memory. Phys. Rev. A 83, 063420 (2011).

    ADS  Article  Google Scholar 

  28. 28

    U'Ren, A. B., Silberhorn, C., Ball, J. L., Banaszek, K. & Walmsley, I. A. Characterization of the nonclassical nature of conditionally prepared single photons. Phys. Rev. A 72, 021802 (2005).

    ADS  Article  Google Scholar 

  29. 29

    Lauk, N., O'Brien, C. & Fleischhauer, M. Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing. Phys. Rev. A 88, 013823 (2013).

    ADS  Article  Google Scholar 

  30. 30

    Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    ADS  Article  Google Scholar 

  31. 31

    Tordrup, K., Negretti, A. & Mølmer, K. Holographic quantum computing. Phys. Rev. Lett. 101, 040501 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32

    Barrett, S. D., Rohde, P. P. & Stace, T. M. Scalable quantum computing with atomic ensembles. New J. Phys. 12, 093032 (2010).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences, and the National Fundamental Research Program of China. X.-H.B. acknowledge support from the Youth Qianren Program.

Author information

Affiliations

Authors

Contributions

S.-J.Y., X.-H.B. and J.-W.P. conceived and designed the experiment. S.-J.Y., X.-J.W. and X.-H.B. carried out the experiment. All authors analysed the data. S.-J.Y., X.-H.B. and J.-W.P. wrote the paper. X.-H.B. and J.-W.P. supervised the whole project.

Corresponding authors

Correspondence to Xiao-Hui Bao or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 331 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wang, X., Bao, X. et al. An efficient quantum light–matter interface with sub-second lifetime. Nature Photon 10, 381–384 (2016). https://doi.org/10.1038/nphoton.2016.51

Download citation

Further reading